import csv
import random
import math
def loadcsv(filename):
lines = csv.reader(open(filename, "r"));
dataset = list(lines)
for i in range(len(dataset)):
#converting strings into numbers for processing
dataset[i] = [float(x) for x in dataset[i]]
return dataset
def splitdataset(dataset, splitratio):
#67% training size
trainsize = int(len(dataset) * splitratio);
trainset = []
copy = list(dataset);
while len(trainset) < trainsize:
#generate indices for the dataset list randomly to pick ele for training data
index = random.randrange(len(copy));
trainset.append(copy.pop(index))
return [trainset, copy]
def separatebyclass(dataset):
separated = {} #dictionary of classes 1 and 0
#creates a dictionary of classes 1 and 0 where the values are
#the instances belonging to each class
for i in range(len(dataset)):
vector = dataset[i]
if (vector[-1] not in separated):
separated[vector[-1]] = []
separated[vector[-1]].append(vector)
return separated
def mean(numbers):
return sum(numbers)/float(len(numbers))
def stdev(numbers):
avg = mean(numbers)
variance = sum([pow(x-avg,2) for x in numbers])/float(len(numbers)-1)
return math.sqrt(variance)
def summarize(dataset): #creates a dictionary of classes
summaries = [(mean(attribute), stdev(attribute)) for attribute in zip(*dataset)];
del summaries[-1] #excluding labels +ve or -ve
return summaries
def summarizebyclass(dataset):
separated = separatebyclass(dataset);
#print(separated)
summaries = {}
for classvalue, instances in separated.items():
#for key,value in dic.items()
#summaries is a dic of tuples(mean,std) for each class value
summaries[classvalue] = summarize(instances) #summarize is used to cal to mean and std
return summaries
def calculateprobability(x, mean, stdev):
exponent = math.exp(-(math.pow(x-mean,2)/(2*math.pow(stdev,2))))
return (1 / (math.sqrt(2*math.pi) * stdev)) * exponent
def calculateclassprobabilities(summaries, inputvector):
probabilities = {} # probabilities contains the all prob of all class of test data
for classvalue, classsummaries in summaries.items():#class and attribute information as mean and sd
probabilities[classvalue] = 1
for i in range(len(classsummaries)):
mean, stdev = classsummaries[i] #take mean and sd of every attribute for class 0 and 1 seperaely
x = inputvector[i] #testvector's first attribute
probabilities[classvalue] *= calculateprobability(x, mean, stdev);#use normal dist
return probabilities
def predict(summaries, inputvector): #training and test data is passed
probabilities = calculateclassprobabilities(summaries, inputvector)
bestLabel, bestProb = None, -1
for classvalue, probability in probabilities.items():#assigns that class which has he highest prob
if bestLabel is None or probability > bestProb:
bestProb = probability
bestLabel = classvalue
return bestLabel
def getpredictions(summaries, testset):
predictions = []
for i in range(len(testset)):
result = predict(summaries, testset[i])
predictions.append(result)
return predictions
def getaccuracy(testset, predictions):
correct = 0
for i in range(len(testset)):
if testset[i][-1] == predictions[i]:
correct += 1
return (correct/float(len(testset))) * 100.0
def main():
filename = 'naivedata.csv'
splitratio = 0.67
dataset = loadcsv(filename);
trainingset, testset = splitdataset(dataset, splitratio)
print('Split {0} rows into train={1} and test={2} rows'.format(len(dataset), len(trainingset), len(testset)))
# prepare model
summaries = summarizebyclass(trainingset);
#print(summaries)
# test model
predictions = getpredictions(summaries, testset) #find the predictions of test data with the training data
accuracy = getaccuracy(testset, predictions)
print('Accuracy of the classifier is : {0}%'.format(accuracy))
main()