// Shorter Implementation of the optimized sieve :
import java.io.*;
import java.util.*;
public class Main {
static void sieve(int n)
{
if(n <= 1)
return;
boolean isPrime[] = new boolean[n+1];
Arrays.fill(isPrime, true);
for(int i=2; i <= n; i++)
{
if(isPrime[i])
{
System.out.print(i+" ");
for(int j = i*i; j <= n; j = j+i)
{
isPrime[j] = false;
}
}
}
}
public static void main (String[] args) {
int n = 23;
sieve(n);
}
}
//Optimized Implementation : Time Complexity : O(nloglogn), Auxiliary Space : O(n)
static void sieve(int n)
{
if(n <= 1)
return;
boolean isPrime[] = new boolean[n+1];
Arrays.fill(isPrime, true);
for(int i=2; i*i <= n; i++)
{
if(isPrime[i])
{
for(int j = i*i; j <= n; j = j+i) // Replaced 2*i by i*i
{
isPrime[j] = false;
}
}
}
for(int i = 2; i<=n; i++)
{
if(isPrime[i])
System.out.print(i+" ");
}
}
//Simple Implementation of Sieve :
static void sieve(int n)
{
if(n <= 1)
return;
boolean isPrime[] = new boolean[n+1];
Arrays.fill(isPrime, true);
for(int i=2; i*i <= n; i++)
{
if(isPrime[i])
{
for(int j = 2*i; j <= n; j = j+i)
{
isPrime[j] = false;
}
}
}
for(int i = 2; i<=n; i++)
{
if(isPrime[i])
System.out.print(i+" ");
}
}
//Naive Solution : Time Complexity : O(n(sqrt(n))
static boolean isPrime(int n)
{
if(n==1)
return false;
if(n==2 || n==3)
return true;
if(n%2==0 || n%3==0)
return false;
for(int i=5; i*i<=n; i=i+6)
{
if(n % i == 0 || n % (i + 2) == 0)
return false;
}
return true;
}
static void printPrimes(int n)
{
for(int i = 2; i<=n; i++)
{
if(isPrime[i])
System.out.print(i+" ");
}
}