Snippets Collections
// Java program to find a triplet 
class FindTriplet { 

	// returns true if there is triplet with sum equal 
	// to 'sum' present in A[]. Also, prints the triplet 
	boolean find3Numbers(int A[], int arr_size, int sum) 
	{ 
		int l, r; 

		/* Sort the elements */
		quickSort(A, 0, arr_size - 1); 

		/* Now fix the first element one by one and find the 
		other two elements */
		for (int i = 0; i < arr_size - 2; i++) { 

			// To find the other two elements, start two index variables 
			// from two corners of the array and move them toward each 
			// other 
			l = i + 1; // index of the first element in the remaining elements 
			r = arr_size - 1; // index of the last element 
			while (l < r) { 
				if (A[i] + A[l] + A[r] == sum) { 
					System.out.print("Triplet is " + A[i] + ", " + A[l] + ", " + A[r]); 
					return true; 
				} 
				else if (A[i] + A[l] + A[r] < sum) 
					l++; 

				else // A[i] + A[l] + A[r] > sum 
					r--; 
			} 
		} 

		// If we reach here, then no triplet was found 
		return false; 
	} 

	int partition(int A[], int si, int ei) 
	{ 
		int x = A[ei]; 
		int i = (si - 1); 
		int j; 

		for (j = si; j <= ei - 1; j++) { 
			if (A[j] <= x) { 
				i++; 
				int temp = A[i]; 
				A[i] = A[j]; 
				A[j] = temp; 
			} 
		} 
		int temp = A[i + 1]; 
		A[i + 1] = A[ei]; 
		A[ei] = temp; 
		return (i + 1); 
	} 

	/* Implementation of Quick Sort 
	A[] --> Array to be sorted 
	si --> Starting index 
	ei --> Ending index 
	*/
	void quickSort(int A[], int si, int ei) 
	{ 
		int pi; 

		/* Partitioning index */
		if (si < ei) { 
			pi = partition(A, si, ei); 
			quickSort(A, si, pi - 1); 
			quickSort(A, pi + 1, ei); 
		} 
	} 

	// Driver program to test above functions 
	public static void main(String[] args) 
	{ 
		FindTriplet triplet = new FindTriplet(); 
		int A[] = { 1, 4, 45, 6, 10, 8 }; 
		int sum = 22; 
		int arr_size = A.length; 

		triplet.find3Numbers(A, arr_size, sum);    // OUTPUT : Triplet is 4, 8, 10
	} 
} 
import java.util.*;
import java.io.*;

class Solution
{
    static int isPresent(int arr[], int n, int sum)
    {
        int l = 0, h = n-1;
        
        while(l <= h)
        {
            if(arr[l] + arr[h] == sum)
              return 1;
            else if(arr[l] + arr[h] > sum)
                h--;
            else l++;
        }
        
        return 0;
    }
    
    public static void main (String[] args) 
    {
        int arr[] = new int[]{2, 3, 7, 8, 11};
        int n = arr.length;
        int sum = 14;
        
        System.out.println(isPresent(arr, n, sum));    // OUTPUT : 1
    }
}
// Java implementation using Hashing 
import java.io.*; 
import java.util.HashSet; 

class PairSum { 
    
	static void printpairs(int arr[], int sum) 
	{ 
		HashSet<Integer> s = new HashSet<Integer>(); 
		for (int i = 0; i < arr.length; ++i) { 
			int temp = sum - arr[i]; 

			// checking for condition 
			if (s.contains(temp)) { 
				System.out.println("Pair with given sum " + sum + " is (" + arr[i] + ", " + temp + ")"); 
			} 
			s.add(arr[i]); 
		} 
	} 

	// Main to test the above function 
	public static void main(String[] args) 
	{ 
		int A[] = { 1, 4, 45, 6, 10, 8 }; 
		int n = 16; 
		printpairs(A, n); 
	} 
} 


// OUTPUT : Pair with given sum 16 is (10, 6)

Save snippets that work with our extensions

Available in the Chrome Web Store Get Firefox Add-on Get VS Code extension