House rent
Thu Nov 07 2024 01:04:39 GMT+0000 (Coordinated Universal Time)
Saved by
@sagar123
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score
data = pd.read_csv('Pune_rent.csv')
print(data.head())
print(data.info())
X = data.drop(columns=['rent'])
y = data['rent']
X = pd.get_dummies(X, drop_first=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
model = LinearRegression()
model.fit(X_train, y_train)
y_pred = model.predict(X_test)
mae = mean_absolute_error(y_test, y_pred)
rmse = mean_squared_error(y_test, y_pred, squared=False)
r2 = r2_score(y_test, y_pred)
print("Model Performance:")
print(f"Mean Absolute Error (MAE): {mae:.2f}")
print(f"Root Mean Squared Error (RMSE): {rmse:.2f}")
print(f"R² Score: {r2:.2f}")
content_copyCOPY
Comments