Map Reduce Java Codes
Wed Jul 02 2025 06:13:01 GMT+0000 (Coordinated Universal Time)
//WordCountMapper.java import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Mapper; public class WordCountMapper extends Mapper<Object, Text, Text, IntWritable> { private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context) throws IOException, InterruptedException { StringTokenizer tokenizer = new StringTokenizer(value.toString()); while (tokenizer.hasMoreTokens()) { String cleanWord = tokenizer.nextToken().toLowerCase().replaceAll("[^a-zA-Z0-9]", ""); word.set(cleanWord); context.write(word, one); } } } //WordCountReducer.java import java.io.IOException; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Reducer; public class WordCountReducer extends Reducer<Text, IntWritable, Text, IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } //WordCountDriver.java import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCountDriver { public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "Word Count"); job.setJarByClass(WordCountDriver.class); job.setMapperClass(WordCountMapper.class); job.setCombinerClass(WordCountReducer.class); // optional job.setReducerClass(WordCountReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); System.exit(job.waitForCompletion(true) ? 0 : 1); } } Steps: mkdir wordcount_classes mkdir sample cp WordCountMapper.java sample/ cp WordCountReducer.java sample/ cp WordCountDriver.java sample/ cd sample javac -classpath $(hadoop classpath) -d ../wordcount_classes *.java cd .. jar -cvf wordcount.jar -C wordcount_classes/ . echo "Hadoop is a framework for distributed Processing" > input.txt hdfs dfs -mkdir /wordcountinput hdfs dfs -put input.txt /wordcountinput hadoop jar wordcount.jar WordCountDriver /wordcountinput/input.txt /wordcountoutput hdfs dfs -ls /wordcountoutput hdfs dfs -cat /wordcountoutput/p*
Comments