RandomForestClassifier
Thu Nov 07 2024 00:37:30 GMT+0000 (Coordinated Universal Time)
Saved by
@sagar123
import pandas as ps
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import LabelEncoder
from sklearn.metrics import accuracy_score,confusion_matrix,classification_report,precision_score
df=pd.read_csv("loan_data_set.csv")
print(df.head())
x=df.iloc[:614]
y=df.Loan_Status
encoder=LabelEncoder()
x_train_enc=x.apply(encoder.fit_transform)
x_train,x_test,y_train,y_test=train_test_split(x_train_enc,y,test_size=0.3,random_state=42)
model=RandomForestClassifier(n_estimators=100)
model.fit(x_train,y_train)
y_pred=model.predict(x_test)
print(accuracy_score(y_test,y_pred))
print(precision_score(y_test,y_pred,average='weighted',pos_label='Y'))
print(confusion_matrix(y_test,y_pred))
print(classification_report(y_test,y_pred))
content_copyCOPY
Comments