Snippets Collections
# concatenate
pd.concat([df1, df2], ignore_index=False, key=['str1', 'str2', 'str3'], sort=True)
# use only "key" if index is ignored

# exclude columns if different
join='inner'

# validating / check for multiple index columns
verify_integrity=True

# append (= easy version of concatenate)
# here, join always = 'outer'
df1.append([df2, df3], ignore_index=True, sort=True)
# good for time-series data or handling missing data
# standard
pd.merge_ordered(df1, df2, on='id', suffixes=('_str1', '_str2'))

# forward-fill
# missing values are filled with information from previous row
fill_method='ffill'
// auto open the shopping cart when adding a product to the cart 
jQuery(document).ready(function($){
             $( document.body ).on( 'added_to_cart', function(){
         $('.elementor-menu-cart__container').addClass('elementor-menu-cart--shown');
             });
             });
/* Poner en Divi Options CSS */
.et_pb_contact_field_options_wrapper .et_pb_contact_field_options_title {
  display: none;
}
"editor.formatOnSave": true,
  "editor.formatOnPaste": true,
  "editor.defaultFormatter": "esbenp.prettier-vscode",
  "files.autoSave": "onFocusChange",
  "editor.formatOnType": true
Portfolio.objects.order_by().order_by(
    'code', # first, cause we want to group by this value
    '-created' # descending order, latest / max will be first
).distinct('code')
/**
* Remove the register link from the wp-login.php script
*/
add_filter('option_users_can_register', function($value) {
    $script = basename(parse_url($_SERVER['SCRIPT_NAME'], PHP_URL_PATH));
  
    if ($script == 'wp-login.php') {
        $value = false;
    }
  
    return $value;
});
let thingHere = "b";

const switcheroonee : { [key: string]: string } = {
  a: "ay",
  b: "bay",
  c: "cay"
};

const here: string = switcheroonee[thingHere] || "nottalotta";
//here = "bay";
module.exports = {
  theme: {
    container: {
      screens: {
         sm: "100%",
         md: "100%",
         lg: "1024px",
         xl: "1280px"
      }
    }
  }
}
trash-put – Delete specified files or directories.
trash-list – Displays the contents of the trash. 
trash-rm – Delete individual files or directories from the trash. 
trash-empty – Delete all files and directories from trash. 
restore-trash – Restore the specified file or directory. 
protected function makeSlug($value)
{
    $slug = Str::slug($value);

    $count = static::whereRaw("slug RLIKE '^{$slug}(-[0-9]+)?$'")->count();

    return $count ? "{$slug}-".++$count : $slug;
}
#quarterly GDP values for all countries 
import pandas as pd
df1 = pd.read_csv('/content/QGDP.csv')
<!doctype html>
<html lang='en'>
<head>
<meta charset='utf-8'>
<meta name='viewport' content='width=device-width, initial-scale=1, shrink-to-fit=no'>
<!-- Boxicons CSS -->
<link href='https://unpkg.com/boxicons@2.1.1/css/boxicons.min.css' rel='stylesheet'>
<title>Hello, Boxicons!</title>
</head>
<body>
<h1>Hello, Boxicons!</h1>
<i class='bx bx-hot'></i>
<i class='bx bxs-hot'></i>
<i class='bx bxl-facebook-square'></i>
</body>
</html>
df2 = pd.read_csv ('/content/covid-stringency-index.csv')
df3 = pd.read_csv ('/content/owid-covid-data.csv')
df1.clean=df1[['Country','Unit','Q4-2018','Q1-2019','Q2-2019','Q3-2019','Q1-2020','Q2-2020','Q3-2020','Q4-2020','Q1-2021','Q2-2021','Q3-2021']]
df1.clean.rename(columns = {'Country': 'CountryName'})
df1.head()
df2 = pd.read_csv ('/content/covid-stringency-index.csv')
df2 = df2.rename(columns={'Entity': 'CountryName','Day':'Date','stringency_index':'StringencyIndex'})
df3= df3.clean= df3[['location','date','total_cases']]
df3=df3.rename(columns={'date':'Date'})
df3=df3.rename(columns={'location':'CountryName'})
df3['Date']=df3["Date"].str.replace('-','')
df3['Date']=df3["Date"].astype(int)
df19=df1.copy()
df19=df19.drop(df19.columns[[3,4,5,6,7,8,9,10,11,12,13]], axis=1)  
df19=df19.rename(columns={'Q4-2018':'QGDP'})
df19.insert(3, "Date", ["2019-03-13" for index in range (60)])
df19.head()
df19=df1.copy()
df19=df19.drop(df19.columns[[3,4,5,6,7,8,9,10,11,12,13]], axis=1)  
df19=df19.rename(columns={'Q4-2018':'QGDP'})
df19.insert(3, "Date", ["2019-03-13" for index in range (60)])

df20=df1.copy()
df20=df20.drop(df20.columns[[2,4,5,6,7,8,9,10,11,12,13]], axis=1)  
df20=df20.rename(columns={'Q1-2019':'QGDP'})
df20.insert(3, "Date", ["2019-05-22" for index in range (60)])

df21=df1.copy()
df21=df21.drop(df21.columns[[2,3,5,6,7,8,9,10,11,12,13]], axis=1)  
df21=df21.rename(columns={'Q2-2019':'QGDP'})
df21.insert(3, "Date", ["2019-08-26" for index in range (60)])

df22=df1.copy()
df22=df22.drop(df22.columns[[2,3,4,6,7,8,9,10,11,12,13]], axis=1)  
df22=df22.rename(columns={'Q3-2019':'QGDP'})
df22.insert(3, "Date", ["2019-11-19" for index in range (60)])

df23=df1.copy()
df23=df23.drop(df23.columns[[2,3,4,5,7,8,9,10,11,12,13]], axis=1)  
df23=df23.rename(columns={'Q4-2019':'QGDP'})
df23.insert(3, "Date", ["2020-02-20" for index in range (60)])

df24=df1.copy()
df24=df24.drop(df24.columns[[2,3,4,5,6,8,9,10,11,12,13]], axis=1)  
df24=df24.rename(columns={'Q1-2020':'QGDP'})
df24.insert(3, "Date", ["2020-06-11" for index in range (60)])

df25=df1.copy()
df25=df25.drop(df25.columns[[2,3,4,5,6,7,9,10,11,12,13]], axis=1)  
df25=df25.rename(columns={'Q2-2020':'QGDP'})
df25.insert(3, "Date", ["2020-09-14" for index in range (60)])

df26=df1.copy()
df26=df26.drop(df26.columns[[2,3,4,5,6,7,8,10,11,12,13]], axis=1)  
df26=df26.rename(columns={'Q3-2020':'QGDP'})
df26.insert(3, "Date", ["2020-12-14" for index in range (60)])

df27=df1.copy()
df27=df27.drop(df27.columns[[2,3,4,5,6,7,8,9,11,12,13]], axis=1)  
df27=df27.rename(columns={'Q4-2020':'QGDP'})
df27.insert(3, "Date", ["2021-02-18" for index in range (60)])

df28=df1.copy()
df28=df28.drop(df28.columns[[2,3,4,5,6,7,8,9,10,12,13]], axis=1)  
df28=df28.rename(columns={'Q1-2021':'QGDP'})
df28.insert(3, "Date", ["2021-05-20" for index in range (60)])

df29=df1.copy()
df29=df29.drop(df29.columns[[2,3,4,5,6,7,8,9,10,11,13]], axis=1)  
df29=df29.rename(columns={'Q2-2021':'QGDP'})
df29.insert(3, "Date", ["2021-08-30" for index in range (60)])

df30=df1.copy()
df30=df30.drop(df30.columns[[2,3,4,5,6,7,8,9,10,11,12]], axis=1)  
df30=df30.rename(columns={'Q3-2021':'QGDP'})
df30.insert(3, "Date", ["2021-12-18" for index in range (60)])
df_qgdpwithdates = pd.concat([df19,df20,df21,df22,df23,df24,df25,df26,df27,df28,df29,df30],ignore_index=True)
df_qgdpwithdates
df_joinedQGDP = pd.merge(df_qgdpwithdates, df2, on=["Date","CountryName"])
df_joinedQGDP=df_joinedQGDP.drop(df_joinedQGDP.columns[[1,4]], axis=1) 
df_joinedQGDP
df_joinedQGDP['Date']=df_joinedQGDP["Date"].str.replace('-','')
#deleting the hyphen in "date" (replacing it with nothing), same for commas below
df_joinedQGDP['QGDP']=df_joinedQGDP["QGDP"].str.replace(',','')
df_joinedQGDP['QGDP']=pd.to_numeric(df_joinedQGDP["QGDP"],errors='coerce')
#to_numeric in pandas turns everything into an integer, but just deletes errors

df_joinedQGDP['Date']=df_joinedQGDP["Date"].astype(int)
df_joinedQGDP=df_joinedQGDP.dropna()
df_joinedQGDP
df_placeholder=df2.copy()
df3=df3.rename(columns={'date':'Date'})
df3=df3.rename(columns={'location':'CountryName'})

df_joinedCovidCases = pd.merge(df_placeholder, df3, on=["Date","CountryName"])
df_joinedCovidCases=df_joinedCovidCases.drop(df_joinedCovidCases.columns[[1]], axis=1)  
df_joinedCovidCases=df_joinedCovidCases.dropna()
#dropping NA values
print(df_joinedCovidCases[df_joinedCovidCases["CountryName"]=="Spain"])
ALTER TABLE `users` DROP `id`;
ALTER TABLE `users` AUTO_INCREMENT = 1;
ALTER TABLE `users` ADD `id` int UNSIGNED NOT NULL AUTO_INCREMENT PRIMARY KEY FIRST;
#CHOW TEST, QGDP
chowtest.chow_test(df_joinedQGDP["StringencyIndex"],df_joinedQGDP['QGDP'],last_index=174,first_index=175, significance=.05)

#CHOW TEST, COVID CASES
chowtest.chow_test(df_joined["StringencyIndex"],df_joined['total_cases'],last_index=156,first_index=157, significance=.05)
df_joinedQGDP.loc[df_joinedQGDP["Date"] == 20200611, "d1"] = 1
df_joinedQGDP.loc[df_joinedQGDP["Date"] != 20200611, "d1"] = 0
df_joinedQGDP.loc[df_joinedQGDP["Date"] == 20200914, "d2"] = 1
df_joinedQGDP.loc[df_joinedQGDP["Date"] != 20200914, "d2"] = 0
df_joinedQGDP.loc[df_joinedQGDP["Date"] == 20201214, "d3"] = 1
df_joinedQGDP.loc[df_joinedQGDP["Date"] != 20201214, "d3"] = 0
df_joinedQGDP.loc[df_joinedQGDP["Date"] == 20210218, "d4"] = 1
df_joinedQGDP.loc[df_joinedQGDP["Date"] != 20210218, "d4"] = 0
df_joinedQGDP.loc[df_joinedQGDP["Date"] == 20210520, "d5"] = 1
df_joinedQGDP.loc[df_joinedQGDP["Date"] != 20210520, "d5"] = 0
df_joinedQGDP.loc[df_joinedQGDP["Date"] == 20210830, "d6"] = 1
df_joinedQGDP.loc[df_joinedQGDP["Date"] != 20210830, "d6"] = 0
df_joinedQGDP.loc[df_joinedQGDP["Date"] == 20211218, "d7"] = 1
df_joinedQGDP.loc[df_joinedQGDP["Date"] != 20211218, "d7"] = 0
!curl https://bootstrap.pypa.io/get-pip.py | python

!pip install linearmodels
from linearmodels import PooledOLS
import statsmodels.api as sm
from linearmodels import PanelOLS
from linearmodels import RandomEffects
data = df_joinedQGDP.copy()

data = data.set_index(['CountryName','Date'])

exog = sm.tools.tools.add_constant(data[["StringencyIndex","d1","d2","d3","d4","d5","d6","d7"]])
endog = data["QGDP"]

model_fe = PanelOLS(endog, exog, entity_effects=True)

print(model_fe)

fe_res1 = model_fe.fit()
#print results
print(fe_res1)


casessummary= df21[["total_cases"]]. describe()

GDPsummary = df21[["QGDP"]].describe()

stringencysummary = df21[["StringencyIndex"]].describe()
summary_joined = stringencysummary.merge(GDPsummary, left_index=True, right_index=True)
allsummary_joined= summary_joined.merge(casessummary, left_index=True, right_index=True)
allsummary_joined
GDPST= [2.390000e+02,
1.591474e+06,
3.368228e+06,
1.731100e+04,
2.545890e+05,
5.057770e+05,
1.709958e+06,
2.027682e+07]
for i in GDPST:
    print("{:#.3g}".format(i))
from prettytable import PrettyTable
summarytable = PrettyTable()

summarytable.title = 'Summary Statistics for: Quarterly GDP, Stringency, and Daily COVID-19 Cases Cleaned Datasets with Values from 2019-2021 (3sf)'
summarytable.field_names = ['Summary statistic','Quarterly GDP/US Dollar, Millions, 2015', 'Stringency Index', 'Daily Total Cases']
summarytable.add_row(["Count", "239","239", "239"])
summarytable.add_row(["Mean", "1.59e+06","54.7", "1.41e+06"])
summarytable.add_row(["Standard Deviation","3.37e+06","17.5","4.13e+06" ])
summarytable.add_row(["Min", "1.73e+04", "2.78","1.00"])
summarytable.add_row(["25%", "2.55e+05", "56.5","3.12e+04"])
summarytable.add_row(["50%","5.06e+05", "56.9","2.57e+05" ])
summarytable.add_row(["75%", "1.71e+06","67.6", "1.09e+06"])
summarytable.add_row(["Max", "2.03e+08", "96.3", "3.92e+07" ])

print(summarytable)

#reference for prettytable: https://www.geeksforgeeks.org/creating-tables-with-prettytable-library-python/
#!/usr/bin/perl

# Copyright James Lawrie 2021
# james@silvermouse.net
#

use warnings;
use strict;

use Data::Dumper;

my @domains = glob('/etc/webmin/virtual-server/domains/*');

my @sites;
my %aliases;

foreach my $domain (@domains) {
    my %temp_config;
    open my $file, "<", $domain;
    foreach (<$file>) {
        if (/^([^=]+)=([^=]+)$/) {
            chomp ($temp_config{$1} = $2);
        }
    }
    close $file;
    if ($temp_config{"alias_mode"} eq "1") {
	if (!$aliases{$temp_config{"backup_alias_dom"}}) {
	    $aliases{$temp_config{"backup_alias_dom"}} = [];
        }
	push ($aliases{$temp_config{"backup_alias_dom"}}, $temp_config{'dom'});
    }
    else {
	push (@sites, \%temp_config);
    }
}

foreach my $site (@sites) {
    my %config = %{$site};
    print generate_config($config{'dom'}, $config{'ssl'}, %config);
    if ($config{'logrotate'}) {
	    generate_logrotate($config{'dom'});
    }
}

sub generate_config {
    my $site = shift;
    my $ssl  = shift;
    my %config = @_;
    my $port = $ssl ? $config{'web_sslport'} : $config{'web_port'};
    my $ssl_config;
    my $config = "<VirtualHost $config{'dns_ip'}:${port}";
    $config .= $config{ip6} ? " [$config{'ip6'}]:${port}>\n" : ">\n";
    if ($ssl) {
        $config .= <<"EOF";
    SSLEngine on
    SSLCertificateFile $config{'ssl_cert'}
    SSLCertificateKeyFile $config{'ssl_key'}
EOF
        $config .= "    SSLCertificateChainFile $config{'ssl_chain'}\n" if $config{'ssl_chain'};
   }
    $config .= <<"EOF";
    SuexecUserGroup "#$config{'uid'}" "#$config{'gid'}"
    ServerName $site
    ServerAlias www.${site}
    ServerAlias autoconfig.${site}
    ServerAlias autodiscover.${site}
EOF
    my $aliases = $aliases{$config{'dom'}};
    foreach my $alias (@$aliases) {
        $config .= "    ServerAlias ${alias}\n    ServerAlias www.${alias}\n" if $alias;
    }
    $config .= <<"EOF";
    DocumentRoot $config{'public_html_path'}
    ErrorLog /var/log/virtualmin/$config{'dom'}_error_log
    CustomLog /var/log/virtualmin/$config{'dom'}_access_log combined
    RemoveHandler .php
    RemoveHandler .php5
    RemoveHandler .php5.6
    RemoveHandler .php7.0
    RemoveHandler .php7.2
    RemoveHandler .php7.3
    RemoveHandler .php7.4
    php_admin_value engine Off
    DirectoryIndex index.html index.htm index.php index.php4 index.php5
    <Directory $config{'public_html_path'}>
        Options -Indexes +IncludesNOEXEC +SymLinksIfOwnerMatch +ExecCGI
        AllowOverride All Options=ExecCGI,Includes,IncludesNOEXEC,Indexes,MultiViews,SymLinksIfOwnerMatch
        Require all granted
        AddType application/x-httpd-php .php
EOF
    my @fcgis = glob("$config{'home'}/fcgi-bin/*");
    my $default_php = 0;
    foreach (@fcgis) {
	if (/.*(php(.*))\.fcgi/) {
            $config .= "        FCGIWrapper $_ .${1}\n";
            $config .= "        AddHandler fcgid-script ${1}\n";
            $default_php = $2 > $default_php ? $2 : $default_php;
        }
    }
    if ($config{'last_php_version'}) { $default_php = $config{'last_php_version'}; }
    $config .= <<"EOF";
	FCGIWrapper $config{'home'}/fcgi-bin/php${default_php}.fcgi .php
        AddHandler fcgid-script .php
        Require all granted
    </Directory>
    <Directory $config{'cgi_bin_path'}>
        allow from all
        AllowOverride All Options=ExecCGI,Includes,IncludesNOEXEC,Indexes,MultiViews,SymLinksIfOwnerMatch
        Require all granted
    </Directory>
    FcgidMaxRequestLen 1073741824
    Redirect /mail/config-v1.1.xml /cgi-bin/autoconfig.cgi
    IPCCommTimeout 61
    FcgidMaxRequestLen 1073741824
    php_value memory_limit 32M
    php_value suhosin.session.encrypt Off
    <Files awstats.pl>
        AuthName "$config{'dom'} statistics"
        AuthType Basic
        AuthUserFile $config{'home'}/.awstats-htpasswd
        require valid-user
    </Files>
</VirtualHost>
EOF
    if ($ssl) {
        $config .= generate_config($config{'dom'}, 0, %config);
    }
    else {
        return $config;
    }
}

sub generate_logrotate {
    my $domain = shift;
    my $logrot = "/etc/logrotate.d/${domain}.conf";
    my $output = <<"EOF";
/var/log/virtualmin/${domain}_access_log /var/log/virtualmin/${domain}_error_log {
	rotate 5
	weekly
	compress
	postrotate
	systemctl reload httpd.service ; sleep 5
	endscript
	sharedscripts
}
EOF
    if (!-e $logrot) {
        open my $fh, ">", $logrot;
        print $fh $output;
    }
}
#Top 10 GDP countries 
GDP2020= GDPQ12020.nlargest(10,'QGDP')
GDP2020.clean= GDP2020[["CountryName","QGDP"]]
GDP2020_rename= GDP2020.clean.rename(columns = {'QGDP': 'GDP Q1-2020'})
GDP2020_rename
GDP2021= GDPQ12021.nlargest(10,'QGDP')
GDP2021.clean= GDP2021[["CountryName","QGDP"]]
GDP2021_rename= GDP2021.clean.rename(columns = {'QGDP': 'GDP Q1-2021'})
GDP2021_rename
GDP_merged = pd.merge(GDP2020_rename, GDP2021_rename, how="right", on=["CountryName"])
GDP_merged
percentagechange = [0.547,-1.83,-2.98,-5.79,1.54,7.67,-2.77,-0.622,0.268,-4.21]
GDP_merged['Percentage Change(%)'] = percentagechange
GDP_merged
def percentage_change(col1,col2):
    return ((col2 - col1) / col1) * 100
#reference: https://stackoverflow.com/questions/42100058/percentage-difference-between-any-two-columns-of-pandas-dataframe

GDP_merged['% change'] = percentage_change(GDP_merged['GDP Q1-2020'],GDP_merged['GDP Q1-2021'])
for i in GDP_merged ['% change']:
  print("{:#.3g}".format(i))

import matplotlib.pyplot as plt

Country = ['USA','Japan','Germany','UK','France','Turkey','Mexico','Italy','Canada','Spain']
GDPgrowth = [0.547,-1.83,-2.98,-5.79,1.54,7.67,-2.77,-0.622,0.268,-4.21]

plt.figure(figsize=(10,5))
plt.bar(Country, GDPgrowth)
plt.xticks(rotation=0)
plt.xlabel("Country")
plt.ylabel("GDP growth (%)")
plt.title("GDP Change of the 10 Wealthiest OECD countries in Q1 2021 Relative to Q1 2020 ")
def addlabels(x,y):
    for i in range(len(x)):
        plt.text(i, y[i], y[i], ha = 'center')
addlabels(Country, GDPgrowth)
plt.savefig('GDPchange.png', dpi=300, bbox_inches='tight')
plt.show()

#reference for bar chart:https://datatofish.com/bar-chart-python-matplotlib/
#reference for axis labels: https://www.kite.com/python/docs/matplotlib.pyplot.xlabel
#reference for making the figure size bigger: https://www.pythonpool.com/matplotlib-figsize/
#reference for saving as an image: https://problemsolvingwithpython.com/06-Plotting-with-Matplotlib/06.04-Saving-Plots/
top_OECD_stringency= pd.merge(top_10_OECD, df3, on="CountryName")
top_OECD_stringency.clean= top_OECD_stringency[['CountryName','StringencyIndex']]
top_OECD_stringency.clean
US_stringency= df21[df21["CountryName"] == "United States"]
US_stringency["StringencyIndex"].mean()
import matplotlib.pyplot as plt

Country = ['USA','Japan','Germany','UK','France','Turkey','Mexico','Italy','Canada','Spain']
StringencyIndex = [55.8,41.1,59.3,58.3,56.9,63.6,64.6,62.3,61.2,53.4]

plt.figure(figsize=(10,4))
plt.bar(Country, StringencyIndex)
plt.xticks(rotation=0)
plt.xlabel("Country")
plt.ylabel("Average Stringency Index")
plt.title("Average Stringency Index of the 10 Wealthiest OECD Countries from 2020-2021")
def addlabels(x,y):
    for i in range(len(x)):
        plt.text(i, y[i], y[i], ha = 'center')
addlabels(Country, StringencyIndex)
plt.savefig('stringency.png', dpi=300, bbox_inches='tight')
plt.show()
US_cases= df21[df21["CountryName"] == "United States"]
US_cases_total= US_cases["total_cases"].sum()
US_cases_total 
import matplotlib.pyplot as plt

Country = ['USA','Japan','Germany','UK','France','Turkey','Mexico','Italy','Canada','Spain']
TotalCases = [1.26e+08,2.88e+06,1.18e+07,2.91e+07,2.76e+07,1.65e+07,9.82e+06,1.39e+07,4.42e+06,1.96e+07 ]
plt.figure(figsize=(15,4))
plt.bar(Country, TotalCases)
plt.xticks(rotation=0)
plt.xlabel("Country")
plt.ylabel("Total Cases from 2020-2021 (3sf)")
plt.title("Total COVID-19 Cases of the 10 Wealthiest OECD Countries from 2020-2021 (3sf)")
def addlabels(x,y):
    for i in range(len(x)):
        plt.text(i, y[i], y[i], ha = 'center')
addlabels(Country, TotalCases)
plt.savefig('cases.png', dpi=300, bbox_inches='tight')

plt.show()
U= [125601037]
for i in U:
  print("{:#.3g}".format(i))
star

Fri Jan 14 2022 09:14:36 GMT+0000 (Coordinated Universal Time)

@ahoeweler

star

Fri Jan 14 2022 10:02:02 GMT+0000 (Coordinated Universal Time)

@ahoeweler

star

Fri Jan 14 2022 11:10:40 GMT+0000 (Coordinated Universal Time) https://wpguide.co.il/ווקמורס/כמה-שיפורים-לווידגט-סל-קניות-של-אלמנטו/

@mastaklance

star

Fri Jan 14 2022 15:02:01 GMT+0000 (Coordinated Universal Time)

@hermann

star

Fri Jan 14 2022 15:15:02 GMT+0000 (Coordinated Universal Time) https://codingshiksha.com/tutorials/visual-studio-code-tutorial-to-use-prettier-code-formatter-on-auto-save-to-format-source-code-full-tutorial-for-beginners/

@robinkazi

star

Fri Jan 14 2022 19:12:43 GMT+0000 (Coordinated Universal Time) https://www.semicolonworld.com/question/61934/django-group-by-one-field-only-take-the-latest-max-of-each-group-and-get-back-the-orm-objects

@arielvol

star

Fri Jan 14 2022 19:17:20 GMT+0000 (Coordinated Universal Time) https://wphelper.site/remove-register-link-wordpress-login/

@mastaklance

star

Fri Jan 14 2022 19:50:06 GMT+0000 (Coordinated Universal Time)

@ryanvv

star

Fri Jan 14 2022 21:34:38 GMT+0000 (Coordinated Universal Time) https://webaim.org/articles/voiceover/

@erinksmith

star

Sat Jan 15 2022 06:32:40 GMT+0000 (Coordinated Universal Time) https://github.com/tailwindlabs/tailwindcss/issues/1102

@richard

star

Sat Jan 15 2022 07:13:28 GMT+0000 (Coordinated Universal Time) https://www.tomshardware.com/how-to/send-files-to-trash-linux

@vikassnwl

star

Sat Jan 15 2022 11:23:49 GMT+0000 (Coordinated Universal Time)

@Maga

star

Sat Jan 15 2022 19:49:19 GMT+0000 (Coordinated Universal Time) https://colab.research.google.com/drive/1rold-ENQrxLU3ods3crjvIcgVlHQ_mpb#scrollTo=5CreHUo9BDwK

@uclqmli

star

Sat Jan 15 2022 20:08:17 GMT+0000 (Coordinated Universal Time)

@talebmedia

star

Sat Jan 15 2022 20:42:41 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:43:27 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:47:28 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:48:05 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:48:31 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:50:36 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:51:16 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:52:03 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:54:02 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:54:49 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:55:44 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 20:59:04 GMT+0000 (Coordinated Universal Time) https://stackoverflow.com/questions/740358/reorder-reset-auto-increment-primary-key

@MojoM

star

Sat Jan 15 2022 20:59:28 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 21:00:08 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 21:01:28 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 21:01:41 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 21:18:41 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:03:53 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:04:21 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:05:02 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:05:24 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:06:33 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:06:44 GMT+0000 (Coordinated Universal Time) https://silvermou.se/tag/virtualmin/

@pirate

star

Sat Jan 15 2022 22:07:21 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:07:50 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:08:30 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:09:00 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:09:19 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:11:22 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:12:23 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:15:06 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:15:44 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:16:10 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:17:27 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:18:02 GMT+0000 (Coordinated Universal Time)

@uclqmli

star

Sat Jan 15 2022 22:18:41 GMT+0000 (Coordinated Universal Time)

@uclqmli

Save snippets that work with our extensions

Available in the Chrome Web Store Get Firefox Add-on Get VS Code extension