train_datagen = image.ImageDataGenerator(
rescale = 1./255, # to normalize bigger values. Convert from 0-255 to 0-1 range.
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True
)
# only rescaling done on test dataset
test_datagen = image.ImageDataGenerator(
rescale = 1./255
)
train_generator = train_datagen.flow_from_directory(
directory=TRAIN_PATH,
target_size=(224,224),
batch_size=32,
class_mode='binary',
save_to_dir = SAVE_TRAIN_PATH,
save_prefix='',
save_format='png'
)
validation_generator = test_datagen.flow_from_directory(
VAL_PATH,
target_size = (224,224),
batch_size = 32,
class_mode = 'binary'
)
#
train_generator.class_indices
validation_generator.class_indices
# generate augmented images and save into the directory
for i in range(5):
train_generator.next()