Snippets Collections
rmsval = df.loc[:, 'c1':'c4']
def getrms(row):  
  a = np.sqrt(sum(row**2/4))
  return a
df['rms'] = df.apply(getrms,axis=1)
df.head()
for c in df_drop.columns:
    df_drop[c] = df_drop[c].str.replace('[^\w\s]+', '')
df_drop = df_drop.astype(str)
df_drop.head()
# Load entire dataset
X, y = torch.load('some_training_set_with_labels.pt')
 
# Train model
for epoch in range(max_epochs):
    for i in range(n_batches):
        # Local batches and labels
        local_X, local_y = X[i*n_batches:(i+1)*n_batches,], y[i*n_batches:(i+1)*n_batches,]
 
        # Your model
        [...]
         
         
# other
# Unoptimized generator
training_generator = SomeSingleCoreGenerator('some_training_set_with_labels.pt')
 
# Train model
for epoch in range(max_epochs):
    for local_X, local_y in training_generator:
        # Your model
        [...]
import pandas as pd

data = {'Product': ['Desktop Computer','Tablet','Printer','Laptop'],
        'Price': [850,200,150,1300]
        }

df = pd.DataFrame(data, columns= ['Product', 'Price'])

df.to_csv(r'Path where you want to store the exported CSV file\File Name.csv')
# df.to_csv('file_name.csv', encoding='utf-8', index=False)
print (df)

data[['column1','column2','column3',...]].to_csv('fileNameWhereYouwantToWrite.csv')
# best way
data['resume'] = data[['Resume_title', 'City', 'State', 'Description', 'work_experiences', 'Educations', 'Skills', 'Certificates', 'Additional Information']].agg(' '.join, axis=1)


# other way
df["period"] = df["Year"] + df["quarter"]
df['Period'] = df['Year'] + ' ' + df['Quarter']
df["period"] = df["Year"].astype(str) + df["quarter"] #If one (or both) of the columns are not string typed
#Beware of NaNs when doing this!
df['period'] = df[['Year', 'quarter', ...]].agg('-'.join, axis=1) #for multiple string columns
df['period'] = df[['Year', 'quarter']].apply(lambda x: ''.join(x), axis=1)
#method cat() of the .str accessor 
df['Period'] = df.Year.str.cat(df.Quarter)
df['Period'] = df.Year.astype(str).str.cat(df.Quarter.astype(str), sep='q')
df['AllTogether'] = df['Country'].str.cat(df[['State', 'City']], sep=' - ') #add parameter na_rep to replace the NaN values with a string if have nan
columns = ['whatever', 'columns', 'you', 'choose']
df['period'] = df[columns].astype(str).sum(axis=1)

#a function
def str_join(df, sep, *cols):
   ...:     from functools import reduce
   ...:     return reduce(lambda x, y: x.astype(str).str.cat(y.astype(str), sep=sep), 
   ...:                   [df[col] for col in cols])
   ...: 

In [4]: df['cat'] = str_join(df, '-', 'c0', 'c1', 'c2', 'c3')
import re

text = 'this is a text'

try:
    found = re.search('is(.+?)text', text).group(1)
except AttributeError:
    # AAA, ZZZ not found in the original string
    found = '0 wtitle' # apply your error handling
found

=> a

# To get more than 1 search
job_title = []
for i in range(0,9282):
    text = data.work_experiences.iloc[i]
    try:
        title = re.findall(r"wtitle (.*?) wcompany",text)
    except :
        title = 'onejob'
    job_title.append(title)
    
data['job_title'] = job_title
# picking up piece of string between separators
# function using partition, like partition, but drops the separators
def between(left,right,s):
    before,_,a = s.partition(left)
    a,_,after = a.partition(right)
    return before,a,after
 
s = "bla bla blaa <a>data</a> lsdjfasdjöf (important notice) 'Daniweb forum' tcha tcha tchaa"
print between('<a>','</a>',s)
print between('(',')',s)
print between("'","'",s)
 
""" Output:
('bla bla blaa ', 'data', " lsdjfasdj\xc3\xb6f (important notice) 'Daniweb forum' tcha tcha tchaa")
('bla bla blaa <a>data</a> lsdjfasdj\xc3\xb6f ', 'important notice', " 'Daniweb forum' tcha tcha tchaa")
('bla bla blaa <a>data</a> lsdjfasdj\xc3\xb6f (important notice) ', 'Daniweb forum', ' tcha tcha tchaa')
"""
import pyparsing as pp

word = pp.Word(pp.alphanums)

s = 'gfgfdAAA1234ZZZuijjk'
rule = pp.nestedExpr('AAA', 'ZZZ')
for match in rule.searchString(s):
    print(match)
# picking up piece of string between separators
# function using partition, like partition, but drops the separators
def between(left,right,s):
    before,_,a = s.partition(left)
    a,_,after = a.partition(right)
    return before,a,after

s = "bla bla blaa <a>data</a> lsdjfasdjöf (important notice) 'Daniweb forum' tcha tcha tchaa"
print between('<a>','</a>',s)
print between('(',')',s)
print between("'","'",s)

""" Output:
('bla bla blaa ', 'data', " lsdjfasdj\xc3\xb6f (important notice) 'Daniweb forum' tcha tcha tchaa")
('bla bla blaa <a>data</a> lsdjfasdj\xc3\xb6f ', 'important notice', " 'Daniweb forum' tcha tcha tchaa")
('bla bla blaa <a>data</a> lsdjfasdj\xc3\xb6f (important notice) ', 'Daniweb forum', ' tcha tcha tchaa')
"""
star

Wed Jul 14 2021 15:06:50 GMT+0000 (UTC) http://www.daniweb.com/code/snippet289548.html

#python #textpreprocessing #nlp
star

Mon Jun 28 2021 17:26:17 GMT+0000 (UTC) https://stackoverflow.com/questions/4666973/how-to-extract-the-substring-between-two-markers?noredirect=1&lq=1

#textpreprocessing #nlp #py
star

Mon Jun 28 2021 17:17:19 GMT+0000 (UTC) http://www.daniweb.com/code/snippet289548.html

#textpreprocessing #nlp #py

Save snippets that work with our extensions

Available in the Chrome Web Store Get Firefox Add-on Get VS Code extension