Snippets Collections
$columns = import-csv C:\infile.csv -Header 'column1','column2','column3','column4' -Delimiter ';'

$Result = @()
ForEach($i in $columns){

   $found = 0;

   ForEach($m in $Result){

    if($m.column1 -eq $i.column1){

        $found = 1

        if( $i.column4.length -ne 0 )
        {   
           $m.column4 = $i.column4
        }
        break;
      }
   }

   if($found -eq 0){
        $Result += [pscustomobject] @{column1=$i.column1; column2=$i.column2; column3=$i.column3; column4=$i.column4}
   }
}

$Result | export-csv C:\out.csv
from docx import Document
import pandas as pd

df = pd.read_csv('out.csv').to_dict()
word_doc = Document()

table_head = list(df.keys())

table_head_len = len(table_head)
tables_rows_len = len(df['name'])

# create tabel
table = word_doc.add_table(cols = table_head_len, rows = tables_rows_len)

# add the first row in the table
for i in range(table_head_len):
    table.cell(row_idx = 0, col_idx = i).text = table_head[i]


# add rows for name col
for i in range(1, tables_rows_len):
    table.cell(row_idx = i, col_idx = 0).text = df['name'][i]


# add rows for age col
for i in range(1, tables_rows_len):
    table.cell(row_idx = i, col_idx = 1).text = str(df['age'][i])


word_doc.save('word_doc.docx')
from random import randint
from faker import Faker
from datetime import date
import pandas as pd

f = Faker()

s_date = date(2018, 5, 1)
e_date = date(2018, 5, 30)

dict_data = {'date': [], 'email': [], 'money': []}

for _date in pd.date_range(start = s_date, end = e_date):
    dict_data['date'].append(_date)
    dict_data['email'].append(f.email())
    dict_data['money'].append(randint(1, 100) * 0.99)

df = pd.DataFrame.from_dict(dict_data)
df.to_csv('out.csv', index = 0)
xCardMemNumber is int
HRead (Members,hRecNumCurrent)
//info(Members.Member_Number)
QRY_MembersCardprint.ParamMember_Number = Members.Member_Number
//info(QRY_MembersCardprint.ParamMember_Number)
HExecuteQuery(QRY_MembersCardprint)
//Trace("YResolution = " + iParameter(iYResolution))
iDestination(iViewer)
//iParameter(iYResolution, 300)
iPrintReport(RPT_Card)
LOAD DATA INFILE '{  [file_path]  /  [file_name].csv}'
INTO TABLE table_name
FIELDS TERMINATED BY ','
ENCLOSED BY '"'
LINES TERMINATED BY '\n'
IGNORE 1 ROWS;
rep=,
number,name,date
1,MARCO PINERO,06/25/2021
2,JHON DOE,06/24/2021
3,MICHEL GRUBER,06/27/2021
4,DELIA VAN THASTEN,06/28/2021
5,MILTON BRIGHT,06/29/2021
Syntax
<Result> = Encrypt(<String to encrypt> , <Password> [, <Type of encryption> [, <Format of encrypted string>]])

Res = Encrypt("My credit card number is 52327453829011", "Password")
# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Print out drives_right column as Series
print(cars.loc[:, 'drives_right'])
print(cars.iloc[:, 1])

# Print out drives_right column as DataFrame
print(cars.loc[:, ['drives_right']])
print(cars.iloc[:, [1]]) #[] square brackets are very sensitive here


# Print out cars_per_cap and drives_right as DataFrame
print(cars.loc[:, ['drives_right', 'cars_per_cap']])
print(cars.iloc[:, [0,2]]) #[] square brackets are very sensitive here

# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Print out drives_right value of Morocco
print(cars.loc[['MOR', 'drives_right']])

# Print sub-DataFrame
print(cars.iloc[[4,5], [1,2]])
# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Print out observation for Japan
print(cars.loc['JPN'])
print(cars.iloc[2])

# Print out observations for Australia and Egypt
print(cars.loc[['AUS','EG']])
print(cars.iloc[[1,6]])
# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Print out country column as Pandas Series
print(cars['country'])

# Print out country column as Pandas DataFrame
print(cars[['country']])


# Print out DataFrame with country and drives_right columns
print(cars[['country','drives_right']])
# Import pandas as pd
import pandas as pd

# Fix import by including index_col
cars = pd.read_csv('cars.csv', index_col = 0)

# Print out cars
print(cars)
star

Wed Jan 08 2025 10:34:24 GMT+0000 (Coordinated Universal Time) https://stackoverflow.com/questions/26460372/powershell-merge-two-csv-files-with-partially-duplicate-lines

#powershell #csv
star

Fri Mar 22 2024 12:23:58 GMT+0000 (Coordinated Universal Time)

#csv #cr #parse
star

Thu Mar 21 2024 07:27:45 GMT+0000 (Coordinated Universal Time) https://www.scaler.com/topics/import-csv-into-mysql/

#sql #csv
star

Mon Aug 29 2022 19:20:27 GMT+0000 (Coordinated Universal Time)

#csv
star

Sat Jun 18 2022 13:39:34 GMT+0000 (Coordinated Universal Time)

#csv #cr #parse
star

Tue Nov 23 2021 12:46:33 GMT+0000 (Coordinated Universal Time)

##dictionary ##pandas #defining_data_frame #csv #dataframe

Save snippets that work with our extensions

Available in the Chrome Web Store Get Firefox Add-on Get VS Code extension