Snippets Collections
# Imports
import time
import json

import numpy as np
import tokens_bert as tokens

from openvino.runtime import Core
from openvino.runtime import Dimension

# Download the model
# directory where model will be downloaded
base_model_dir = "model"

# desired precision
precision = "FP16-INT8"

# model name as named in Open Model Zoo
model_name = "bert-small-uncased-whole-word-masking-squad-int8-0002"

model_path = f"model/intel/{model_name}/{precision}/{model_name}.xml"
model_weights_path = f"model/intel/{model_name}/{precision}/{model_name}.bin"

download_command = f"omz_downloader " \
                   f"--name {model_name} " \
                   f"--precision {precision} " \
                   f"--output_dir {base_model_dir} " \
                   f"--cache_dir {base_model_dir}"
! $download_command

# Load the model for Entity Extraction with Dynamic Shape
# initialize inference engine
ie_core = Core()
# read the network and corresponding weights from file
model = ie_core.read_model(model=model_path, weights=model_weights_path)

# assign dynamic shapes to every input layer on the last dimension
for input_layer in model.inputs:
    input_shape = input_layer.partial_shape
    input_shape[1] = Dimension(1, 384)
    model.reshape({input_layer: input_shape})

# compile the model for the CPU
compiled_model = ie_core.compile_model(model=model, device_name="CPU")

# get input names of nodes
input_keys = list(compiled_model.inputs)

# Processing
# path to vocabulary file
vocab_file_path = "data/vocab.txt"

# create dictionary with words and their indices
vocab = tokens.load_vocab_file(vocab_file_path)

# define special tokens
cls_token = vocab["[CLS]"]
sep_token = vocab["[SEP]"]

# set a confidence score threshold
confidence_threshold = 0.4

# Preprocessing
# generator of a sequence of inputs
def prepare_input(entity_tokens, context_tokens):
    input_ids = [cls_token] + entity_tokens + [sep_token] + \
        context_tokens + [sep_token]
    # 1 for any index
    attention_mask = [1] * len(input_ids)
    # 0 for entity tokens, 1 for context part
    token_type_ids = [0] * (len(entity_tokens) + 2) + \
        [1] * (len(context_tokens) + 1)

    # create input to feed the model
    input_dict = {
        "input_ids": np.array([input_ids], dtype=np.int32),
        "attention_mask": np.array([attention_mask], dtype=np.int32),
        "token_type_ids": np.array([token_type_ids], dtype=np.int32),
    }

    # some models require additional position_ids
    if "position_ids" in [i_key.any_name for i_key in input_keys]:
        position_ids = np.arange(len(input_ids))
        input_dict["position_ids"] = np.array([position_ids], dtype=np.int32)

    return input_dict

# Postprocessing
def postprocess(output_start, output_end, entity_tokens,
                context_tokens_start_end, input_size):

    def get_score(logits):
        out = np.exp(logits)
        return out / out.sum(axis=-1)

    # get start-end scores for context
    score_start = get_score(output_start)
    score_end = get_score(output_end)

    # index of first context token in tensor
    context_start_idx = len(entity_tokens) + 2
    # index of last+1 context token in tensor
    context_end_idx = input_size - 1

    # find product of all start-end combinations to find the best one
    max_score, max_start, max_end = find_best_entity_window(
        start_score=score_start, end_score=score_end,
        context_start_idx=context_start_idx, context_end_idx=context_end_idx
    )

    # convert to context text start-end index
    max_start = context_tokens_start_end[max_start][0]
    max_end = context_tokens_start_end[max_end][1]

    return max_score, max_start, max_end


def find_best_entity_window(start_score, end_score,
                            context_start_idx, context_end_idx):
    context_len = context_end_idx - context_start_idx
    score_mat = np.matmul(
        start_score[context_start_idx:context_end_idx].reshape(
            (context_len, 1)),
        end_score[context_start_idx:context_end_idx].reshape(
            (1, context_len)),
    )
    # reset candidates with end before start
    score_mat = np.triu(score_mat)
    # reset long candidates (>16 words)
    score_mat = np.tril(score_mat, 16)
    # find the best start-end pair
    max_s, max_e = divmod(score_mat.flatten().argmax(), score_mat.shape[1])
    max_score = score_mat[max_s, max_e]

    return max_score, max_s, max_e

def get_best_entity(entity, context, vocab):
    # convert context string to tokens
    context_tokens, context_tokens_end = tokens.text_to_tokens(
        text=context.lower(), vocab=vocab)
    # convert entity string to tokens
    entity_tokens, _ = tokens.text_to_tokens(text=entity.lower(), vocab=vocab)

    network_input = prepare_input(entity_tokens, context_tokens)
    input_size = len(context_tokens) + len(entity_tokens) + 3

    # openvino inference
    output_start_key = compiled_model.output("output_s")
    output_end_key = compiled_model.output("output_e")
    result = compiled_model(network_input)

    # postprocess the result getting the score and context range for the answer
    score_start_end = postprocess(output_start=result[output_start_key][0],
                                  output_end=result[output_end_key][0],
                                  entity_tokens=entity_tokens,
                                  context_tokens_start_end=context_tokens_end,
                                  input_size=input_size)

    # return the part of the context, which is already an answer
    return context[score_start_end[1]:score_start_end[2]], score_start_end[0]

# Set the Entity Recognition Template
template = ["building", "company", "persons", "city",
            "state", "height", "floor", "address"]

def run_analyze_entities(context):
    print(f"Context: {context}\n", flush=True)

    if len(context) == 0:
        print("Error: Empty context or outside paragraphs")
        return

    if len(context) > 380:
        print("Error: The context is too long for this particular model. "
              "Try with context shorter than 380 words.")
        return

    # measure processing time
    start_time = time.perf_counter()
    extract = []
    for field in template:
        entity_to_find = field + "?"
        entity, score = get_best_entity(entity=entity_to_find,
                                        context=context,
                                        vocab=vocab)
        if score >= confidence_threshold:
            extract.append({"Entity": entity, "Type": field,
                            "Score": f"{score:.2f}"})
    end_time = time.perf_counter()
    res = {"Extraction": extract, "Time": f"{end_time - start_time:.2f}s"}
    print("\nJSON Output:")
    print(json.dumps(res, sort_keys=False, indent=4))

# Run on Simple Text
# Sample 1
source_text = "Intel Corporation is an American multinational and technology" \
    " company headquartered in Santa Clara, California."
run_analyze_entities(source_text)

# Sample 2
source_text = "Intel was founded in Mountain View, California, " \
    "in 1968 by Gordon E. Moore, a chemist, and Robert Noyce, " \
    "a physicist and co-inventor of the integrated circuit."
run_analyze_entities(source_text)

# Sample 3
source_text = "The Robert Noyce Building in Santa Clara, California, " \
    "is the headquarters for Intel Corporation. It was constructed in 1992 " \
    "and is located at 2200 Mission College Boulevard - 95054. It has an " \
    "estimated height of 22.20 meters and 6 floors above ground."
run_analyze_entities(source_text)
# Import TensorFlow and Other Libraries
import os
import sys
from pathlib import Path

import PIL
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from PIL import Image
from openvino.runtime import Core
from openvino.tools.mo import mo_tf
from tensorflow import keras
from tensorflow.keras import layers
from tensorflow.keras.models import Sequential

sys.path.append("../utils")
from notebook_utils import download_file

# Download and Explore the Dataset
import pathlib
dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True)
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.jpg')))
print(image_count)

roses = list(data_dir.glob('roses/*'))
PIL.Image.open(str(roses[0]))
PIL.Image.open(str(roses[1]))

tulips = list(data_dir.glob('tulips/*'))
PIL.Image.open(str(tulips[0]))
PIL.Image.open(str(tulips[1]))

# Create a Dataset
batch_size = 32
img_height = 180
img_width = 180

train_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="training",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

val_ds = tf.keras.preprocessing.image_dataset_from_directory(
  data_dir,
  validation_split=0.2,
  subset="validation",
  seed=123,
  image_size=(img_height, img_width),
  batch_size=batch_size)

class_names = train_ds.class_names
print(class_names)

# Visualize the Data
plt.figure(figsize=(10, 10))
for images, labels in train_ds.take(1):
    for i in range(9):
        ax = plt.subplot(3, 3, i + 1)
        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        plt.axis("off")

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

# Configure the Dataset for Performance
# AUTOTUNE = tf.data.AUTOTUNE
AUTOTUNE = tf.data.experimental.AUTOTUNE
train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

# Standardize the Data
normalization_layer = layers.experimental.preprocessing.Rescaling(1./255)

normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y))
image_batch, labels_batch = next(iter(normalized_ds))
first_image = image_batch[0]
# Notice the pixels values are now in `[0,1]`.
print(np.min(first_image), np.max(first_image)) 

# Create the Model
num_classes = 5

model = Sequential([
  layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
  layers.Conv2D(16, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(32, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Conv2D(64, 3, padding='same', activation='relu'),
  layers.MaxPooling2D(),
  layers.Flatten(),
  layers.Dense(128, activation='relu'),
  layers.Dense(num_classes)
])

# Compile the Model
model.compile(optimizer='adam',
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])
# Preparation
from pathlib import Path

import tensorflow as tf

model_xml = Path("model/flower/flower_ir.xml")
dataset_url = (
    "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz"
)
data_dir = Path(tf.keras.utils.get_file("flower_photos", origin=dataset_url, untar=True))

if not model_xml.exists():
    print("Executing training notebook. This will take a while...")
    %run 301-tensorflow-training-openvino.ipynb

# Imports
import copy
import os
import sys

import cv2
import matplotlib.pyplot as plt
import numpy as np
from addict import Dict
from openvino.tools.pot.api import Metric, DataLoader
from openvino.tools.pot.graph import load_model, save_model
from openvino.tools.pot.graph.model_utils import compress_model_weights
from openvino.tools.pot.engines.ie_engine import IEEngine
from openvino.tools.pot.pipeline.initializer import create_pipeline
from openvino.runtime import Core
from PIL import Image

sys.path.append("../utils")
from notebook_utils import benchmark_model, download_file

# Settings
model_config = Dict(
    {
        "model_name": "flower",
        "model": "model/flower/flower_ir.xml",
        "weights": "model/flower/flower_ir.bin",
    }
)

engine_config = Dict({"device": "CPU", "stat_requests_number": 2, "eval_requests_number": 2})

algorithms = [
    {
        "name": "DefaultQuantization",
        "params": {
            "target_device": "CPU",
            "preset": "performance",
            "stat_subset_size": 1000,
        },
    }
]

# Create DataLoader Class
class ClassificationDataLoader(DataLoader):
    """
    DataLoader for image data that is stored in a directory per category. For example, for
    categories _rose_ and _daisy_, rose images are expected in data_source/rose, daisy images
    in data_source/daisy.
    """

    def __init__(self, data_source):
        """
        :param data_source: path to data directory
        """
        self.data_source = Path(data_source)
        self.dataset = [p for p in data_dir.glob("**/*") if p.suffix in (".png", ".jpg")]
        self.class_names = sorted([item.name for item in Path(data_dir).iterdir() if item.is_dir()])

    def __len__(self):
        """
        Returns the number of elements in the dataset
        """
        return len(self.dataset)

    def __getitem__(self, index):
        """
        Get item from self.dataset at the specified index.
        Returns (annotation, image), where annotation is a tuple (index, class_index)
        and image a preprocessed image in network shape
        """
        if index >= len(self):
            raise IndexError
        filepath = self.dataset[index]
        annotation = (index, self.class_names.index(filepath.parent.name))
        image = self._read_image(filepath)
        return annotation, image

    def _read_image(self, index):
        """
        Read image at dataset[index] to memory, resize, convert to BGR and to network shape

        :param index: dataset index to read
        :return ndarray representation of image batch
        """
        image = cv2.imread(os.path.join(self.data_source, index))[:, :, (2, 1, 0)]
        image = cv2.resize(image, (180, 180)).astype(np.float32)
        return image

# Create Accuracy Metric Class
class Accuracy(Metric):
    def __init__(self):
        super().__init__()
        self._name = "accuracy"
        self._matches = []

    @property
    def value(self):
        """Returns accuracy metric value for the last model output."""
        return {self._name: self._matches[-1]}

    @property
    def avg_value(self):
        """
        Returns accuracy metric value for all model outputs. Results per image are stored in
        self._matches, where True means a correct prediction and False a wrong prediction.
        Accuracy is computed as the number of correct predictions divided by the total
        number of predictions.
        """
        num_correct = np.count_nonzero(self._matches)
        return {self._name: num_correct / len(self._matches)}

    def update(self, output, target):
        """Updates prediction matches.

        :param output: model output
        :param target: annotations
        """
        predict = np.argmax(output[0], axis=1)
        match = predict == target
        self._matches.append(match)

    def reset(self):
        """
        Resets the Accuracy metric. This is a required method that should initialize all
        attributes to their initial value.
        """
        self._matches = []

    def get_attributes(self):
        """
        Returns a dictionary of metric attributes {metric_name: {attribute_name: value}}.
        Required attributes: 'direction': 'higher-better' or 'higher-worse'
                             'type': metric type
        """
        return {self._name: {"direction": "higher-better", "type": "accuracy"}}

# POT Optimization
# Step 1: Load the model
model = load_model(model_config=model_config)
original_model = copy.deepcopy(model)

# Step 2: Initialize the data loader
data_loader = ClassificationDataLoader(data_source=data_dir)

# Step 3 (Optional. Required for AccuracyAwareQuantization): Initialize the metric
#        Compute metric results on original model
metric = Accuracy()

# Step 4: Initialize the engine for metric calculation and statistics collection
engine = IEEngine(config=engine_config, data_loader=data_loader, metric=metric)

# Step 5: Create a pipeline of compression algorithms
pipeline = create_pipeline(algo_config=algorithms, engine=engine)

# Step 6: Execute the pipeline
compressed_model = pipeline.run(model=model)

# Step 7 (Optional): Compress model weights quantized precision
#                    in order to reduce the size of final .bin file
compress_model_weights(model=compressed_model)

# Step 8: Save the compressed model and get the path to the model
compressed_model_paths = save_model(
    model=compressed_model, save_path=os.path.join(os.path.curdir, "model/optimized")
)
compressed_model_xml = Path(compressed_model_paths[0]["model"])
print(f"The quantized model is stored in {compressed_model_xml}")

# Step 9 (Optional): Evaluate the original and compressed model. Print the results
original_metric_results = pipeline.evaluate(original_model)
if original_metric_results:
    print(f"Accuracy of the original model:  {next(iter(original_metric_results.values())):.5f}")

quantized_metric_results = pipeline.evaluate(compressed_model)
if quantized_metric_results:
    print(f"Accuracy of the quantized model: {next(iter(quantized_metric_results.values())):.5f}")

# Run Inference on Quantized Model
def pre_process_image(imagePath, img_height=180):
    # Model input format
    n, c, h, w = [1, 3, img_height, img_height]
    image = Image.open(imagePath)
    image = image.resize((h, w), resample=Image.BILINEAR)

    # Convert to array and change data layout from HWC to CHW
    image = np.array(image)

    input_image = image.reshape((n, h, w, c))

    return input_image

# Load the optimized model and get the names of the input and output layer
ie = Core()
model_pot = ie.read_model(model="model/optimized/flower_ir.xml")
compiled_model_pot = ie.compile_model(model=model_pot, device_name="CPU")
input_layer = compiled_model_pot.input(0)
output_layer = compiled_model_pot.output(0)

# Get the class names: a list of directory names in alphabetical order
class_names = sorted([item.name for item in Path(data_dir).iterdir() if item.is_dir()])

# Run inference on an input image...
inp_img_url = (
    "https://upload.wikimedia.org/wikipedia/commons/4/48/A_Close_Up_Photo_of_a_Dandelion.jpg"
)
directory = "output"
inp_file_name = "A_Close_Up_Photo_of_a_Dandelion.jpg"
file_path = Path(directory)/Path(inp_file_name)
# Download the image if it does not exist yet
if not Path(inp_file_name).exists():
    download_file(inp_img_url, inp_file_name, directory=directory)

# Pre-process the image and get it ready for inference.
input_image = pre_process_image(imagePath=file_path)
print(f'input image shape: {input_image.shape}')
print(f'input layer shape: {input_layer.shape}')

res = compiled_model_pot([input_image])[output_layer]

score = tf.nn.softmax(res[0])

# Show the results
image = Image.open(file_path)
plt.imshow(image)
print(
    "This image most likely belongs to {} with a {:.2f} percent confidence.".format(
        class_names[np.argmax(score)], 100 * np.max(score)
    )
)

# Compare Inference Speed
# print the available devices on this system
ie = Core()
print("Device information:")
print(ie.get_property("CPU", "FULL_DEVICE_NAME"))
if "GPU" in ie.available_devices:
    print(ie.get_property("GPU", "FULL_DEVICE_NAME"))

# Original model - CPU
benchmark_model(model_path=model_xml, device="CPU", seconds=15, api='async')

# Quantized model - CPU
benchmark_model(model_path=compressed_model_xml, device="CPU", seconds=15, api='async')

# Original model - MULTI:CPU,GPU
if "GPU" in ie.available_devices:
    benchmark_model(model_path=model_xml, device="MULTI:CPU,GPU", seconds=15, api='async')
else:
    print("A supported integrated GPU is not available on this system.")

# Quantized model - MULTI:CPU,GPU
if "GPU" in ie.available_devices:
    benchmark_model(model_path=compressed_model_xml, device="MULTI:CPU,GPU", seconds=15, api='async')
else:
    print("A supported integrated GPU is not available on this system.")

# print the available devices on this system
print("Device information:")
print(ie.get_property("CPU", "FULL_DEVICE_NAME"))
if "GPU" in ie.available_devices:
    print(ie.get_property("GPU", "FULL_DEVICE_NAME"))

# Original IR model - CPU
benchmark_output = %sx benchmark_app -m $model_xml -t 15 -api async
# Remove logging info from benchmark_app output and show only the results
benchmark_result = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith("  ") or line=="")]
print("\n".join(benchmark_result))

# Quantized IR model - CPU
benchmark_output = %sx benchmark_app -m $compressed_model_xml -t 15 -api async
# Remove logging info from benchmark_app output and show only the results
benchmark_result = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith("  ") or line=="")]
print("\n".join(benchmark_result))

# Original IR model - MULTI:CPU,GPU
ie = Core()
if "GPU" in ie.available_devices:
    benchmark_output = %sx benchmark_app -m $model_xml -d MULTI:CPU,GPU -t 15 -api async
    # Remove logging info from benchmark_app output and show only the results
    benchmark_result = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith("  ") or line=="")]
    print("\n".join(benchmark_result))
else:
    print("An integrated GPU is not available on this system.")

# Quantized IR model - MULTI:CPU,GPU
ie = Core()
if "GPU" in ie.available_devices:
    benchmark_output = %sx benchmark_app -m $compressed_model_xml -d MULTI:CPU,GPU -t 15 -api async
    # Remove logging info from benchmark_app output and show only the results
    benchmark_result = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith("  ") or line=="")]
    print("\n".join(benchmark_result))
else:
    print("An integrated GPU is not available on this system.")
# Imports and Settings
# On Windows, add the directory that contains cl.exe to the PATH to enable PyTorch to find the
# required C++ tools. This code assumes that Visual Studio 2019 is installed in the default
# directory. If you have a different C++ compiler, please add the correct path to os.environ["PATH"]
# directly. Note that the C++ Redistributable is not enough to run this notebook.

# Adding the path to os.environ["LIB"] is not always required - it depends on the system's configuration

import sys

if sys.platform == "win32":
    import distutils.command.build_ext
    import os
    from pathlib import Path

    VS_INSTALL_DIR = r"C:/Program Files (x86)/Microsoft Visual Studio"
    cl_paths = sorted(list(Path(VS_INSTALL_DIR).glob("**/Hostx86/x64/cl.exe")))
    if len(cl_paths) == 0:
        raise ValueError(
            "Cannot find Visual Studio. This notebook requires a C++ compiler. If you installed "
            "a C++ compiler, please add the directory that contains cl.exe to `os.environ['PATH']`."
        )
    else:
        # If multiple versions of MSVC are installed, get the most recent version
        cl_path = cl_paths[-1]
        vs_dir = str(cl_path.parent)
        os.environ["PATH"] += f"{os.pathsep}{vs_dir}"
        # Code for finding the library dirs from
        # https://stackoverflow.com/questions/47423246/get-pythons-lib-path
        d = distutils.core.Distribution()
        b = distutils.command.build_ext.build_ext(d)
        b.finalize_options()
        os.environ["LIB"] = os.pathsep.join(b.library_dirs)
        print(f"Added {vs_dir} to PATH")

import sys
import time
import warnings  # to disable warnings on export to ONNX
import zipfile
from pathlib import Path
import logging

import torch
import nncf  # Important - should be imported directly after torch

import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms

from nncf.common.utils.logger import set_log_level
set_log_level(logging.ERROR)  # Disables all NNCF info and warning messages
from nncf import NNCFConfig
from nncf.torch import create_compressed_model, register_default_init_args
from openvino.runtime import Core
from torch.jit import TracerWarning

sys.path.append("../utils")
from notebook_utils import download_file

torch.manual_seed(0)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using {device} device")

MODEL_DIR = Path("model")
OUTPUT_DIR = Path("output")
DATA_DIR = Path("data")
BASE_MODEL_NAME = "resnet18"
image_size = 64

OUTPUT_DIR.mkdir(exist_ok=True)
MODEL_DIR.mkdir(exist_ok=True)
DATA_DIR.mkdir(exist_ok=True)

# Paths where PyTorch, ONNX and OpenVINO IR models will be stored
fp32_pth_path = Path(MODEL_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".pth")
fp32_onnx_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".onnx")
fp32_ir_path = fp32_onnx_path.with_suffix(".xml")
int8_onnx_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_int8")).with_suffix(".onnx")
int8_ir_path = int8_onnx_path.with_suffix(".xml")

# It's possible to train FP32 model from scratch, but it might be slow. So the pre-trained weights are downloaded by default.
pretrained_on_tiny_imagenet = True
fp32_pth_url = "https://storage.openvinotoolkit.org/repositories/nncf/openvino_notebook_ckpts/302_resnet18_fp32_v1.pth"
download_file(fp32_pth_url, directory=MODEL_DIR, filename=fp32_pth_path.name)

# Download Tiny ImageNet dataset
def download_tiny_imagenet_200(
    data_dir: Path,
    url="http://cs231n.stanford.edu/tiny-imagenet-200.zip",
    tarname="tiny-imagenet-200.zip",
):
    archive_path = data_dir / tarname
    download_file(url, directory=data_dir, filename=tarname)
    zip_ref = zipfile.ZipFile(archive_path, "r")
    zip_ref.extractall(path=data_dir)
    zip_ref.close()

def prepare_tiny_imagenet_200(dataset_dir: Path):
    # format validation set the same way as train set is formatted
    val_data_dir = dataset_dir / 'val'
    val_annotations_file = val_data_dir / 'val_annotations.txt'
    with open(val_annotations_file, 'r') as f:
        val_annotation_data = map(lambda line: line.split('\t')[:2], f.readlines())
    val_images_dir = val_data_dir / 'images'
    for image_filename, image_label in val_annotation_data:
        from_image_filepath = val_images_dir / image_filename
        to_image_dir = val_data_dir / image_label
        if not to_image_dir.exists():
            to_image_dir.mkdir()
        to_image_filepath = to_image_dir / image_filename
        from_image_filepath.rename(to_image_filepath)
    val_annotations_file.unlink()
    val_images_dir.rmdir()
    

DATASET_DIR = DATA_DIR / "tiny-imagenet-200"
if not DATASET_DIR.exists():
    download_tiny_imagenet_200(DATA_DIR)
    prepare_tiny_imagenet_200(DATASET_DIR)
    print(f"Successfully downloaded and prepared dataset at: {DATASET_DIR}")

# Pre-train Floating-Point Model
# Train Function
def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter("Time", ":3.3f")
    losses = AverageMeter("Loss", ":2.3f")
    top1 = AverageMeter("Acc@1", ":2.2f")
    top5 = AverageMeter("Acc@5", ":2.2f")
    progress = ProgressMeter(
        len(train_loader), [batch_time, losses, top1, top5], prefix="Epoch:[{}]".format(epoch)
    )

    # switch to train mode
    model.train()

    end = time.time()
    for i, (images, target) in enumerate(train_loader):
        images = images.to(device)
        target = target.to(device)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        # compute gradient and do opt step
        optimizer.zero_grad()
        loss.backward()
        optimizer.step()

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        print_frequency = 50
        if i % print_frequency == 0:
            progress.display(i)

# Validate Function
def validate(val_loader, model, criterion):
    batch_time = AverageMeter("Time", ":3.3f")
    losses = AverageMeter("Loss", ":2.3f")
    top1 = AverageMeter("Acc@1", ":2.2f")
    top5 = AverageMeter("Acc@5", ":2.2f")
    progress = ProgressMeter(len(val_loader), [batch_time, losses, top1, top5], prefix="Test: ")

    # switch to evaluate mode
    model.eval()

    with torch.no_grad():
        end = time.time()
        for i, (images, target) in enumerate(val_loader):
            images = images.to(device)
            target = target.to(device)

            # compute output
            output = model(images)
            loss = criterion(output, target)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), images.size(0))
            top1.update(acc1[0], images.size(0))
            top5.update(acc5[0], images.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            print_frequency = 10
            if i % print_frequency == 0:
                progress.display(i)

        print(" * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}".format(top1=top1, top5=top5))
    return top1.avg

# Helpers
class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self, name, fmt=":f"):
        self.name = name
        self.fmt = fmt
        self.reset()

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
        return fmtstr.format(**self.__dict__)


class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]
        print("\t".join(entries))

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = "{:" + str(num_digits) + "d}"
        return "[" + fmt + "/" + fmt.format(num_batches) + "]"


def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res

# Get a Pre-trained FP32 Model
num_classes = 200  # 200 is for Tiny ImageNet, default is 1000 for ImageNet
init_lr = 1e-4
batch_size = 128
epochs = 4

model = models.resnet18(pretrained=not pretrained_on_tiny_imagenet)
# update the last FC layer for Tiny ImageNet number of classes
model.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True)
model.to(device)

# Data loading code
train_dir = DATASET_DIR / "train"
val_dir = DATASET_DIR / "val"
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

train_dataset = datasets.ImageFolder(
    train_dir,
    transforms.Compose(
        [
            transforms.Resize(image_size),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            normalize,
        ]
    ),
)
val_dataset = datasets.ImageFolder(
    val_dir,
    transforms.Compose(
        [
            transforms.Resize(image_size),
            transforms.ToTensor(),
            normalize,
        ]
    ),
)

train_loader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, sampler=None
)

val_loader = torch.utils.data.DataLoader(
    val_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True
)

# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=init_lr)

if pretrained_on_tiny_imagenet:
    #
    # ** WARNING: torch.load functionality uses Python's pickling module that
    # may be used to perform arbitrary code execution during unpickling. Only load data that you
    # trust.
    #
    checkpoint = torch.load(str(fp32_pth_path), map_location="cpu")
    model.load_state_dict(checkpoint["state_dict"], strict=True)
    acc1_fp32 = checkpoint["acc1"]
else:
    best_acc1 = 0
    # Training loop
    for epoch in range(0, epochs):
        # run a single training epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion)

        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if is_best:
            checkpoint = {"state_dict": model.state_dict(), "acc1": acc1}
            torch.save(checkpoint, fp32_pth_path)
    acc1_fp32 = best_acc1
    
print(f"Accuracy of FP32 model: {acc1_fp32:.3f}")

dummy_input = torch.randn(1, 3, image_size, image_size).to(device)

torch.onnx.export(model, dummy_input, fp32_onnx_path)
print(f"FP32 ONNX model was exported to {fp32_onnx_path}.")

# Create and Initialize Quantization
nncf_config_dict = {
    "input_info": {"sample_size": [1, 3, image_size, image_size]},
    "log_dir": str(OUTPUT_DIR),  # log directory for NNCF-specific logging outputs
    "compression": {
        "algorithm": "quantization",  # specify the algorithm here
    },
}
nncf_config = NNCFConfig.from_dict(nncf_config_dict)

nncf_config = register_default_init_args(nncf_config, train_loader)
compression_ctrl, model = create_compressed_model(model, nncf_config)
acc1 = validate(val_loader, model, criterion)
print(f"Accuracy of initialized INT8 model: {acc1:.3f}")

# Fine-tune the Compressed Model
compression_lr = init_lr / 10
optimizer = torch.optim.Adam(model.parameters(), lr=compression_lr)

# train for one epoch with NNCF
train(train_loader, model, criterion, optimizer, epoch=0)

# evaluate on validation set after Quantization-Aware Training (QAT case)
acc1_int8 = validate(val_loader, model, criterion)

print(f"Accuracy of tuned INT8 model: {acc1_int8:.3f}")
print(f"Accuracy drop of tuned INT8 model over pre-trained FP32 model: {acc1_fp32 - acc1_int8:.3f}")

# Export INT8 Model to ONNX
if not int8_onnx_path.exists():
    warnings.filterwarnings("ignore", category=TracerWarning)
    warnings.filterwarnings("ignore", category=UserWarning)
    # Export INT8 model to ONNX that is supported by the OpenVINO™ toolkit
    compression_ctrl.export_model(int8_onnx_path)
    print(f"INT8 ONNX model exported to {int8_onnx_path}.")

# Convert ONNX models to OpenVINO Intermediate Representation (IR)
if not fp32_ir_path.exists():
    !mo --input_model $fp32_onnx_path --input_shape "[1,3, $image_size, $image_size]" --mean_values "[123.675, 116.28 , 103.53]" --scale_values "[58.395, 57.12 , 57.375]" --data_type FP16 --output_dir $OUTPUT_DIR

if not int8_ir_path.exists():
    !mo --input_model $int8_onnx_path --input_shape "[1,3, $image_size, $image_size]" --mean_values "[123.675, 116.28 , 103.53]" --scale_values "[58.395, 57.12 , 57.375]" --data_type FP16 --output_dir $OUTPUT_DIR

# Benchmark Model Performance by Computing Inference Time
def parse_benchmark_output(benchmark_output):
    parsed_output = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith("  ") or line == "")]
    print(*parsed_output, sep='\n')


print('Benchmark FP32 model (IR)')
benchmark_output = ! benchmark_app -m $fp32_ir_path -d CPU -api async -t 15
parse_benchmark_output(benchmark_output)

print('Benchmark INT8 model (IR)')
benchmark_output = ! benchmark_app -m $int8_ir_path -d CPU -api async -t 15
parse_benchmark_output(benchmark_output)

# Show CPU Information for reference
ie = Core()
ie.get_property(device_name="CPU", name="FULL_DEVICE_NAME")
# Imports and Settings
from pathlib import Path
import logging

import tensorflow as tf
import tensorflow_datasets as tfds
from tensorflow.python.keras import layers
from tensorflow.python.keras import models

from nncf import NNCFConfig
from nncf.tensorflow.helpers.model_creation import create_compressed_model
from nncf.tensorflow.initialization import register_default_init_args
from nncf.common.utils.logger import set_log_level

set_log_level(logging.ERROR)

MODEL_DIR = Path("model")
OUTPUT_DIR = Path("output")
MODEL_DIR.mkdir(exist_ok=True)
OUTPUT_DIR.mkdir(exist_ok=True)

BASE_MODEL_NAME = "ResNet-18"

fp32_h5_path = Path(MODEL_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".h5")
fp32_sm_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_fp32"))
fp32_ir_path = Path(OUTPUT_DIR / "saved_model").with_suffix(".xml")
int8_pb_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_int8")).with_suffix(".pb")
int8_pb_name = Path(BASE_MODEL_NAME + "_int8").with_suffix(".pb")
int8_ir_path = int8_pb_path.with_suffix(".xml")

BATCH_SIZE = 128
IMG_SIZE = (64, 64)  # Default Imagenet image size
NUM_CLASSES = 10  # For Imagenette dataset

LR = 1e-5

MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255)  # From Imagenet dataset
STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255)  # From Imagenet dataset

fp32_pth_url = "https://storage.openvinotoolkit.org/repositories/nncf/openvino_notebook_ckpts/305_resnet18_imagenette_fp32_v1.h5"
_ = tf.keras.utils.get_file(fp32_h5_path.resolve(), fp32_pth_url)
print(f'Absolute path where the model weights are saved:\n {fp32_h5_path.resolve()}')

# Dataset Preprocessing
datasets, datasets_info = tfds.load('imagenette/160px', shuffle_files=True, as_supervised=True, with_info=True,
                                    read_config=tfds.ReadConfig(shuffle_seed=0))
train_dataset, validation_dataset = datasets['train'], datasets['validation']
fig = tfds.show_examples(train_dataset, datasets_info)

def preprocessing(image, label):
    image = tf.image.resize(image, IMG_SIZE)
    image = image - MEAN_RGB
    image = image / STDDEV_RGB
    label = tf.one_hot(label, NUM_CLASSES)
    return image, label


train_dataset = (train_dataset.map(preprocessing, num_parallel_calls=tf.data.experimental.AUTOTUNE)
                              .batch(BATCH_SIZE)
                              .prefetch(tf.data.experimental.AUTOTUNE))

validation_dataset = (validation_dataset.map(preprocessing, num_parallel_calls=tf.data.experimental.AUTOTUNE)
                                        .batch(BATCH_SIZE)
                                        .prefetch(tf.data.experimental.AUTOTUNE))

# Define a Floating-Point Model
def residual_conv_block(filters, stage, block, strides=(1, 1), cut='pre'):
    def layer(input_tensor):
        x = layers.BatchNormalization(epsilon=2e-5)(input_tensor)
        x = layers.Activation('relu')(x)

        # defining shortcut connection
        if cut == 'pre':
            shortcut = input_tensor
        elif cut == 'post':
            shortcut = layers.Conv2D(filters, (1, 1), strides=strides, kernel_initializer='he_uniform', 
                                     use_bias=False)(x)

        # continue with convolution layers
        x = layers.ZeroPadding2D(padding=(1, 1))(x)
        x = layers.Conv2D(filters, (3, 3), strides=strides, kernel_initializer='he_uniform', use_bias=False)(x)

        x = layers.BatchNormalization(epsilon=2e-5)(x)
        x = layers.Activation('relu')(x)
        x = layers.ZeroPadding2D(padding=(1, 1))(x)
        x = layers.Conv2D(filters, (3, 3), kernel_initializer='he_uniform', use_bias=False)(x)

        # add residual connection
        x = layers.Add()([x, shortcut])
        return x

    return layer


def ResNet18(input_shape=None):
    """Instantiates the ResNet18 architecture."""
    img_input = layers.Input(shape=input_shape, name='data')

    # ResNet18 bottom
    x = layers.BatchNormalization(epsilon=2e-5, scale=False)(img_input)
    x = layers.ZeroPadding2D(padding=(3, 3))(x)
    x = layers.Conv2D(64, (7, 7), strides=(2, 2), kernel_initializer='he_uniform', use_bias=False)(x)
    x = layers.BatchNormalization(epsilon=2e-5)(x)
    x = layers.Activation('relu')(x)
    x = layers.ZeroPadding2D(padding=(1, 1))(x)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(x)

    # ResNet18 body
    repetitions = (2, 2, 2, 2)
    for stage, rep in enumerate(repetitions):
        for block in range(rep):
            filters = 64 * (2 ** stage)
            if block == 0 and stage == 0:
                x = residual_conv_block(filters, stage, block, strides=(1, 1), cut='post')(x)
            elif block == 0:
                x = residual_conv_block(filters, stage, block, strides=(2, 2), cut='post')(x)
            else:
                x = residual_conv_block(filters, stage, block, strides=(1, 1), cut='pre')(x)
    x = layers.BatchNormalization(epsilon=2e-5)(x)
    x = layers.Activation('relu')(x)

    # ResNet18 top
    x = layers.GlobalAveragePooling2D()(x)
    x = layers.Dense(NUM_CLASSES)(x)
    x = layers.Activation('softmax')(x)

    # Create model
    model = models.Model(img_input, x)

    return model

IMG_SHAPE = IMG_SIZE + (3,)
model = ResNet18(input_shape=IMG_SHAPE)

# Pre-train Floating-Point Model
# Load the floating-point weights
model.load_weights(fp32_h5_path)

# Compile the floating-point model
model.compile(loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1),
              metrics=[tf.keras.metrics.CategoricalAccuracy(name='acc@1')])

# Validate the floating-point model
test_loss, acc_fp32 = model.evaluate(validation_dataset,
                                     callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=['acc@1']))
print(f"\nAccuracy of FP32 model: {acc_fp32:.3f}")

model.save(fp32_sm_path)
print(f'Absolute path where the model is saved:\n {fp32_sm_path.resolve()}')

# Create and Initialize Quantization
nncf_config_dict = {
    "input_info": {"sample_size": [1, 3] + list(IMG_SIZE)},
    "log_dir": str(OUTPUT_DIR),  # log directory for NNCF-specific logging outputs
    "compression": {
        "algorithm": "quantization",  # specify the algorithm here
    },
}
nncf_config = NNCFConfig.from_dict(nncf_config_dict)

nncf_config = register_default_init_args(nncf_config=nncf_config,
                                         data_loader=train_dataset,
                                         batch_size=BATCH_SIZE)

compression_ctrl, model = create_compressed_model(model, nncf_config)

# Compile the int8 model
model.compile(optimizer=tf.keras.optimizers.Adam(lr=LR),
              loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1),
              metrics=[tf.keras.metrics.CategoricalAccuracy(name='acc@1')])

# Validate the int8 model
test_loss, test_acc = model.evaluate(validation_dataset,
                                     callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=['acc@1']))
print(f"\nAccuracy of INT8 model after initialization: {test_acc:.3f}")

# Fine-tune the Compressed Model
# Train the int8 model
model.fit(train_dataset,
          epochs=2)

# Validate the int8 model
test_loss, acc_int8 = model.evaluate(validation_dataset,
                                     callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=['acc@1']))
print(f"\nAccuracy of INT8 model after fine-tuning: {acc_int8:.3f}")
print(f"\nAccuracy drop of tuned INT8 model over pre-trained FP32 model: {acc_fp32 - acc_int8:.3f}")

compression_ctrl.export_model(int8_pb_path, 'frozen_graph')
print(f'Absolute path where the int8 model is saved:\n {int8_pb_path.resolve()}')

# Export Frozen Graph Models to OpenVINO Intermediate Representation (IR)
!mo --framework=tf --input_shape=[1,64,64,3] --input=data --saved_model_dir=$fp32_sm_path --output_dir=$OUTPUT_DIR

!mo --framework=tf --input_shape=[1,64,64,3] --input=Placeholder --input_model=$int8_pb_path --output_dir=$OUTPUT_DIR

# Benchmark Model Performance by Computing Inference Time
def parse_benchmark_output(benchmark_output):
    parsed_output = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith("  ") or line == "")]
    print(*parsed_output, sep='\n')


print('Benchmark FP32 model (IR)')
benchmark_output = ! benchmark_app -m $fp32_ir_path -d CPU -api async -t 15
parse_benchmark_output(benchmark_output)

print('\nBenchmark INT8 model (IR)')
benchmark_output = ! benchmark_app -m $int8_ir_path -d CPU -api async -t 15
parse_benchmark_output(benchmark_output)

# Show CPU Information for reference
from openvino.runtime import Core

ie = Core()
ie.get_property(device_name='CPU', name="FULL_DEVICE_NAME")
# Imports
import sys
import os
import cv2
import numpy as np
import paddle
import math
import time
import collections
from PIL import Image
from pathlib import Path
import tarfile
import urllib.request

from openvino.runtime import Core
from IPython import display
import copy

sys.path.append("../utils")
import notebook_utils as utils
import pre_post_processing as processing

# Models for PaddleOCR
# Define the function to download text detection and recognition models from PaddleOCR resources

def run_model_download(model_url, model_file_path):
    """
    Download pre-trained models from PaddleOCR resources

    Parameters:
        model_url: url link to pre-trained models
        model_file_path: file path to store the downloaded model
    """
    model_name = model_url.split("/")[-1]
    
    if model_file_path.is_file(): 
        print("Model already exists")
    else:
        # Download the model from the server, and untar it.
        print("Downloading the pre-trained model... May take a while...")

        # create a directory
        os.makedirs("model", exist_ok=True)
        urllib.request.urlretrieve(model_url, f"model/{model_name} ")
        print("Model Downloaded")

        file = tarfile.open(f"model/{model_name} ")
        res = file.extractall("model")
        file.close()
        if not res:
            print(f"Model Extracted to {model_file_path}.")
        else:
            print("Error Extracting the model. Please check the network.")

# Download the Model for Text Detection
# Directory where model will be downloaded

det_model_url = "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar"
det_model_file_path = Path("model/ch_ppocr_mobile_v2.0_det_infer/inference.pdmodel")

run_model_download(det_model_url, det_model_file_path)

# Load the Model for Text Detection
# initialize inference engine for text detection
core = Core()
det_model = core.read_model(model=det_model_file_path)
det_compiled_model = core.compile_model(model=det_model, device_name="CPU")

# get input and output nodes for text detection
det_input_layer = det_compiled_model.input(0)
det_output_layer = det_compiled_model.output(0)

# Download the Model for Text Recognition
rec_model_url = "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar"
rec_model_file_path = Path("model/ch_ppocr_mobile_v2.0_rec_infer/inference.pdmodel")

run_model_download(rec_model_url, rec_model_file_path)

# Load the Model for Text Recognition with Dynamic Shape
# read the model and corresponding weights from file
rec_model = core.read_model(model=rec_model_file_path)

# assign dynamic shapes to every input layer on the last dimension
for input_layer in rec_model.inputs:
    input_shape = input_layer.partial_shape
    input_shape[3] = -1
    rec_model.reshape({input_layer: input_shape})

rec_compiled_model = core.compile_model(model=rec_model, device_name="CPU")

# get input and output nodes
rec_input_layer = rec_compiled_model.input(0)
rec_output_layer = rec_compiled_model.output(0)

# Preprocessing image functions for text detection and recognition
# Preprocess for text detection
def image_preprocess(input_image, size):
    """
    Preprocess input image for text detection

    Parameters:
        input_image: input image 
        size: value for the image to be resized for text detection model
    """
    img = cv2.resize(input_image, (size, size))
    img = np.transpose(img, [2, 0, 1]) / 255
    img = np.expand_dims(img, 0)
    # NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True}
    img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
    img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
    img -= img_mean
    img /= img_std
    return img.astype(np.float32)

# Preprocess for text recognition
def resize_norm_img(img, max_wh_ratio):
    """
    Resize input image for text recognition

    Parameters:
        img: bounding box image from text detection 
        max_wh_ratio: value for the resizing for text recognition model
    """
    rec_image_shape = [3, 32, 320]
    imgC, imgH, imgW = rec_image_shape
    assert imgC == img.shape[2]
    character_type = "ch"
    if character_type == "ch":
        imgW = int((32 * max_wh_ratio))
    h, w = img.shape[:2]
    ratio = w / float(h)
    if math.ceil(imgH * ratio) > imgW:
        resized_w = imgW
    else:
        resized_w = int(math.ceil(imgH * ratio))
    resized_image = cv2.resize(img, (resized_w, imgH))
    resized_image = resized_image.astype('float32')
    resized_image = resized_image.transpose((2, 0, 1)) / 255
    resized_image -= 0.5
    resized_image /= 0.5
    padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32)
    padding_im[:, :, 0:resized_w] = resized_image
    return padding_im


def prep_for_rec(dt_boxes, frame):
    """
    Preprocessing of the detected bounding boxes for text recognition

    Parameters:
        dt_boxes: detected bounding boxes from text detection 
        frame: original input frame 
    """
    ori_im = frame.copy()
    img_crop_list = [] 
    for bno in range(len(dt_boxes)):
        tmp_box = copy.deepcopy(dt_boxes[bno])
        img_crop = processing.get_rotate_crop_image(ori_im, tmp_box)
        img_crop_list.append(img_crop)
        
    img_num = len(img_crop_list)
    # Calculate the aspect ratio of all text bars
    width_list = []
    for img in img_crop_list:
        width_list.append(img.shape[1] / float(img.shape[0]))
    
    # Sorting can speed up the recognition process
    indices = np.argsort(np.array(width_list))
    return img_crop_list, img_num, indices


def batch_text_box(img_crop_list, img_num, indices, beg_img_no, batch_num):
    """
    Batch for text recognition

    Parameters:
        img_crop_list: processed detected bounding box images 
        img_num: number of bounding boxes from text detection
        indices: sorting for bounding boxes to speed up text recognition
        beg_img_no: the beginning number of bounding boxes for each batch of text recognition inference
        batch_num: number of images for each batch
    """
    norm_img_batch = []
    max_wh_ratio = 0
    end_img_no = min(img_num, beg_img_no + batch_num)
    for ino in range(beg_img_no, end_img_no):
        h, w = img_crop_list[indices[ino]].shape[0:2]
        wh_ratio = w * 1.0 / h
        max_wh_ratio = max(max_wh_ratio, wh_ratio)
    for ino in range(beg_img_no, end_img_no):
        norm_img = resize_norm_img(img_crop_list[indices[ino]], max_wh_ratio)
        norm_img = norm_img[np.newaxis, :]
        norm_img_batch.append(norm_img)

    norm_img_batch = np.concatenate(norm_img_batch)
    norm_img_batch = norm_img_batch.copy()
    return norm_img_batch

# Postprocessing image for text detection
def post_processing_detection(frame, det_results):
    """
    Postprocess the results from text detection into bounding boxes

    Parameters:
        frame: input image 
        det_results: inference results from text detection model
    """   
    ori_im = frame.copy()
    data = {'image': frame}
    data_resize = processing.DetResizeForTest(data)
    data_list = []
    keep_keys = ['image', 'shape']
    for key in keep_keys:
        data_list.append(data_resize[key])
    img, shape_list = data_list

    shape_list = np.expand_dims(shape_list, axis=0) 
    pred = det_results[0]    
    if isinstance(pred, paddle.Tensor):
        pred = pred.numpy()
    segmentation = pred > 0.3

    boxes_batch = []
    for batch_index in range(pred.shape[0]):
        src_h, src_w, ratio_h, ratio_w = shape_list[batch_index]
        mask = segmentation[batch_index]
        boxes, scores = processing.boxes_from_bitmap(pred[batch_index], mask, src_w, src_h)
        boxes_batch.append({'points': boxes})
    post_result = boxes_batch
    dt_boxes = post_result[0]['points']
    dt_boxes = processing.filter_tag_det_res(dt_boxes, ori_im.shape)    
    return dt_boxes

# Main processing function for PaddleOCR
def run_paddle_ocr(source=0, flip=False, use_popup=False, skip_first_frames=0):
    """
    Main function to run the paddleOCR inference:
    1. Create a video player to play with target fps (utils.VideoPlayer).
    2. Prepare a set of frames for text detection and recognition.
    3. Run AI inference for both text detection and recognition.
    4. Visualize the results.

    Parameters:
        source: the webcam number to feed the video stream with primary webcam set to "0", or the video path.  
        flip: to be used by VideoPlayer function for flipping capture image
        use_popup: False for showing encoded frames over this notebook, True for creating a popup window.
        skip_first_frames: Number of frames to skip at the beginning of the video. 
    """
    # create video player to play with target fps
    player = None
    try:
        player = utils.VideoPlayer(source=source, flip=flip, fps=30, skip_first_frames=skip_first_frames)
        # Start video capturing
        player.start()
        if use_popup:
            title = "Press ESC to Exit"
            cv2.namedWindow(winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)

        processing_times = collections.deque()
        while True:
            # grab the frame
            frame = player.next()
            if frame is None:
                print("Source ended")
                break
            # if frame larger than full HD, reduce size to improve the performance
            scale = 1280 / max(frame.shape)
            if scale < 1:
                frame = cv2.resize(src=frame, dsize=None, fx=scale, fy=scale,
                                   interpolation=cv2.INTER_AREA)
            # preprocess image for text detection
            test_image = image_preprocess(frame, 640)
                
            # measure processing time for text detection
            start_time = time.time()
            # perform the inference step
            det_results = det_compiled_model([test_image])[det_output_layer]
            stop_time = time.time()

            # Postprocessing for Paddle Detection
            dt_boxes = post_processing_detection(frame, det_results)

            processing_times.append(stop_time - start_time)
            # use processing times from last 200 frames
            if len(processing_times) > 200:
                processing_times.popleft()
            processing_time_det = np.mean(processing_times) * 1000

            # Preprocess detection results for recognition
            dt_boxes = processing.sorted_boxes(dt_boxes)  
            batch_num = 6
            img_crop_list, img_num, indices = prep_for_rec(dt_boxes, frame)
            
            # For storing recognition results, include two parts:
            # txts are the recognized text results, scores are the recognition confidence level 
            rec_res = [['', 0.0]] * img_num
            txts = [] 
            scores = []

            for beg_img_no in range(0, img_num, batch_num):

                # Recognition starts from here
                norm_img_batch = batch_text_box(
                    img_crop_list, img_num, indices, beg_img_no, batch_num)

                # Run inference for text recognition 
                rec_results = rec_compiled_model([norm_img_batch])[rec_output_layer]

                # Postprocessing recognition results
                postprocess_op = processing.build_post_process(processing.postprocess_params)
                rec_result = postprocess_op(rec_results)
                for rno in range(len(rec_result)):
                    rec_res[indices[beg_img_no + rno]] = rec_result[rno]   
                if rec_res:
                    txts = [rec_res[i][0] for i in range(len(rec_res))] 
                    scores = [rec_res[i][1] for i in range(len(rec_res))]
                                   
            image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
            boxes = dt_boxes
            # draw text recognition results beside the image
            draw_img = processing.draw_ocr_box_txt(
                image,
                boxes,
                txts,
                scores,
                drop_score=0.5)

            # Visualize PaddleOCR results
            f_height, f_width = draw_img.shape[:2]
            fps = 1000 / processing_time_det
            cv2.putText(img=draw_img, text=f"Inference time: {processing_time_det:.1f}ms ({fps:.1f} FPS)", 
                        org=(20, 40),fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=f_width / 1000,
                        color=(0, 0, 255), thickness=1, lineType=cv2.LINE_AA)
            
            # use this workaround if there is flickering
            if use_popup: 
                draw_img = cv2.cvtColor(draw_img, cv2.COLOR_RGB2BGR)
                cv2.imshow(winname=title, mat=draw_img)
                key = cv2.waitKey(1)
                # escape = 27
                if key == 27:
                    break
            else:
                # encode numpy array to jpg
                draw_img = cv2.cvtColor(draw_img, cv2.COLOR_RGB2BGR)
                _, encoded_img = cv2.imencode(ext=".jpg", img=draw_img,
                                              params=[cv2.IMWRITE_JPEG_QUALITY, 100])
                # create IPython image
                i = display.Image(data=encoded_img)
                # display the image in this notebook
                display.clear_output(wait=True)
                display.display(i)
            
    # ctrl-c
    except KeyboardInterrupt:
        print("Interrupted")
    # any different error
    except RuntimeError as e:
        print(e)
    finally:
        if player is not None:
            # stop capturing
            player.stop()
        if use_popup:
            cv2.destroyAllWindows()

# Run Live PaddleOCR with OpenVINO
run_paddle_ocr(source=0, flip=False, use_popup=False)

# Test OCR results on video file

video_file = "https://raw.githubusercontent.com/yoyowz/classification/master/images/test.mp4"
run_paddle_ocr(source=video_file, flip=False, use_popup=False, skip_first_frames=0)
# pip3 install openvino
 
# Install ONNX Runtime for OpenVINO™ Execution Provider
# pip3 install onnxruntime-openvino==1.11.0
 
# pip3 install -r requirements.txt
# Running the ONNXRuntime OpenVINO™ Execution Provider sample
# python3 yolov4.py --device CPU_FP32 --video classroom.mp4 --model yolov4.onnx

'''
Copyright (C) 2021-2022, Intel Corporation
SPDX-License-Identifier: Apache-2.0
Major Portions of this code are copyright of their respective authors and released under the Apache License Version 2.0:
- onnx, Copyright 2021-2022. For licensing see https://github.com/onnx/models/blob/master/LICENSE
'''

import cv2
import numpy as np
from onnx import numpy_helper
import onnx
import onnxruntime as rt
import os
from PIL import Image
from scipy import special
import colorsys
import random
import argparse
import sys
import time
import platform

if platform.system() == "Windows":
    from openvino import utils
    utils.add_openvino_libs_to_path()

def image_preprocess(image, target_size, gt_boxes=None):

    ih, iw = target_size
    h, w, _ = image.shape

    scale = min(iw/w, ih/h)
    nw, nh = int(scale * w), int(scale * h)
    image_resized = cv2.resize(image, (nw, nh))

    image_padded = np.full(shape=[ih, iw, 3], fill_value=128.0)
    dw, dh = (iw - nw) // 2, (ih-nh) // 2
    image_padded[dh:nh+dh, dw:nw+dw, :] = image_resized
    image_padded = image_padded / 255.

    if gt_boxes is None:
        return image_padded

    else:
        gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw
        gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh
        return image_padded, gt_boxes

def postprocess_bbbox(pred_bbox):
    '''define anchor boxes'''
    for i, pred in enumerate(pred_bbox):
        conv_shape = pred.shape
        output_size = conv_shape[1]
        conv_raw_dxdy = pred[:, :, :, :, 0:2]
        conv_raw_dwdh = pred[:, :, :, :, 2:4]
        xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size))
        xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2)

        xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1])
        xy_grid = xy_grid.astype(float)

        pred_xy = ((special.expit(conv_raw_dxdy) * XYSCALE[i]) - 0.5 * (XYSCALE[i] - 1) + xy_grid) * STRIDES[i]
        pred_wh = (np.exp(conv_raw_dwdh) * ANCHORS[i])
        pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1)

    pred_bbox = [np.reshape(x, (-1, np.shape(x)[-1])) for x in pred_bbox]
    pred_bbox = np.concatenate(pred_bbox, axis=0)
    return pred_bbox

def postprocess_boxes(pred_bbox, org_img_shape, input_size, score_threshold):
    '''remove boundary boxs with a low detection probability'''
    valid_scale=[0, np.inf]
    pred_bbox = np.array(pred_bbox)

    pred_xywh = pred_bbox[:, 0:4]
    pred_conf = pred_bbox[:, 4]
    pred_prob = pred_bbox[:, 5:]

    # # (1) (x, y, w, h) --> (xmin, ymin, xmax, ymax)
    pred_coor = np.concatenate([pred_xywh[:, :2] - pred_xywh[:, 2:] * 0.5,
                                pred_xywh[:, :2] + pred_xywh[:, 2:] * 0.5], axis=-1)
    # # (2) (xmin, ymin, xmax, ymax) -> (xmin_org, ymin_org, xmax_org, ymax_org)
    org_h, org_w = org_img_shape
    resize_ratio = min(input_size / org_w, input_size / org_h)

    dw = (input_size - resize_ratio * org_w) / 2
    dh = (input_size - resize_ratio * org_h) / 2

    pred_coor[:, 0::2] = 1.0 * (pred_coor[:, 0::2] - dw) / resize_ratio
    pred_coor[:, 1::2] = 1.0 * (pred_coor[:, 1::2] - dh) / resize_ratio

    # # (3) clip some boxes that are out of range
    pred_coor = np.concatenate([np.maximum(pred_coor[:, :2], [0, 0]),
                                np.minimum(pred_coor[:, 2:], [org_w - 1, org_h - 1])], axis=-1)
    invalid_mask = np.logical_or((pred_coor[:, 0] > pred_coor[:, 2]), (pred_coor[:, 1] > pred_coor[:, 3]))
    pred_coor[invalid_mask] = 0

    # # (4) discard some invalid boxes
    bboxes_scale = np.sqrt(np.multiply.reduce(pred_coor[:, 2:4] - pred_coor[:, 0:2], axis=-1))
    scale_mask = np.logical_and((valid_scale[0] < bboxes_scale), (bboxes_scale < valid_scale[1]))

    # # (5) discard some boxes with low scores
    classes = np.argmax(pred_prob, axis=-1)
    scores = pred_conf * pred_prob[np.arange(len(pred_coor)), classes]
    score_mask = scores > score_threshold
    mask = np.logical_and(scale_mask, score_mask)
    coors, scores, classes = pred_coor[mask], scores[mask], classes[mask]

    return np.concatenate([coors, scores[:, np.newaxis], classes[:, np.newaxis]], axis=-1)

def bboxes_iou(boxes1, boxes2):
    '''calculate the Intersection Over Union value'''
    boxes1 = np.array(boxes1)
    boxes2 = np.array(boxes2)

    boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1])
    boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1])

    left_up       = np.maximum(boxes1[..., :2], boxes2[..., :2])
    right_down    = np.minimum(boxes1[..., 2:], boxes2[..., 2:])

    inter_section = np.maximum(right_down - left_up, 0.0)
    inter_area    = inter_section[..., 0] * inter_section[..., 1]
    union_area    = boxes1_area + boxes2_area - inter_area
    ious          = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps)

    return ious

def nms(bboxes, iou_threshold, sigma=0.3, method='nms'):
    """
    :param bboxes: (xmin, ymin, xmax, ymax, score, class)
    Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf
          https://github.com/bharatsingh430/soft-nms
    """
    classes_in_img = list(set(bboxes[:, 5]))
    best_bboxes = []

    for cls in classes_in_img:
        cls_mask = (bboxes[:, 5] == cls)
        cls_bboxes = bboxes[cls_mask]

        while len(cls_bboxes) > 0:
            max_ind = np.argmax(cls_bboxes[:, 4])
            best_bbox = cls_bboxes[max_ind]
            best_bboxes.append(best_bbox)
            cls_bboxes = np.concatenate([cls_bboxes[: max_ind], cls_bboxes[max_ind + 1:]])
            iou = bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4])
            weight = np.ones((len(iou),), dtype=np.float32)

            assert method in ['nms', 'soft-nms']

            if method == 'nms':
                iou_mask = iou > iou_threshold
                weight[iou_mask] = 0.0

            if method == 'soft-nms':
                weight = np.exp(-(1.0 * iou ** 2 / sigma))

            cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight
            score_mask = cls_bboxes[:, 4] > 0.
            cls_bboxes = cls_bboxes[score_mask]

    return best_bboxes

def read_class_names(class_file_name):
    '''loads class name from a file'''
    names = {}
    with open(class_file_name, 'r') as data:
        for ID, name in enumerate(data):
            names[ID] = name.strip('\n')
    return names

def draw_bbox(image, bboxes, classes=read_class_names("coco.names"), show_label=True):
    """
    bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates.
    """

    num_classes = len(classes)
    image_h, image_w, _ = image.shape
    hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)]
    colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples))
    colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors))

    random.seed(0)
    random.shuffle(colors)
    random.seed(None)

    for i, bbox in enumerate(bboxes):
        coor = np.array(bbox[:4], dtype=np.int32)
        fontScale = 0.5
        score = bbox[4]
        class_ind = int(bbox[5])
        bbox_color = colors[class_ind]
        bbox_thick = int(0.6 * (image_h + image_w) / 600)
        c1, c2 = (coor[0], coor[1]), (coor[2], coor[3])
        cv2.rectangle(image, c1, c2, bbox_color, bbox_thick)

        if show_label:
            bbox_mess = '%s: %.2f' % (classes[class_ind], score)
            t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick//2)[0]
            cv2.rectangle(image, c1, (c1[0] + t_size[0], c1[1] - t_size[1] - 3), bbox_color, -1)
            cv2.putText(image, bbox_mess, (c1[0], c1[1]-2), cv2.FONT_HERSHEY_SIMPLEX,
                        fontScale, (0, 0, 0), bbox_thick//2, lineType=cv2.LINE_AA)

    return image

def get_anchors(anchors_path, tiny=False):
    '''loads the anchors from a file'''
    with open(anchors_path) as f:
        anchors = f.readline()
    anchors = np.array(anchors.split(','), dtype=np.float32)
    return anchors.reshape(3, 3, 2)

#Specify the path to anchors file on your machine
ANCHORS = "./yolov4_anchors.txt"    
STRIDES = [8, 16, 32]
XYSCALE = [1.2, 1.1, 1.05]
ANCHORS = get_anchors(ANCHORS)
STRIDES = np.array(STRIDES)

def parse_arguments():
    parser = argparse.ArgumentParser(description='Object Detection using YOLOv4 in OPENCV using OpenVINO Execution Provider for ONNXRuntime')
    parser.add_argument('--device', default='CPU_FP32', help="Device to perform inference on 'cpu (MLAS)' or on devices supported by OpenVINO-EP [CPU_FP32, GPU_FP32, GPU_FP16, MYRIAD_FP16, VAD-M_FP16].")
    parser.add_argument('--image', help='Path to image file.')
    parser.add_argument('--video', help='Path to video file.')
    parser.add_argument('--model', help='Path to model.')
    args = parser.parse_args()
    return args
    
def check_model_extension(fp):
  # Split the extension from the path and normalise it to lowercase.
  ext = os.path.splitext(fp)[-1].lower()

  # Now we can simply use != to check for inequality, no need for wildcards.
  if(ext != ".onnx"):
    raise Exception(fp, "is an unknown file format. Use the model ending with .onnx format")
  
  if not os.path.exists(fp):
    raise Exception("[ ERROR ] Path of the onnx model file is Invalid")

def main(): 

    # Process arguments
    args = parse_arguments()

    # Validate model file path
    check_model_extension(args.model)

    # Process inputs
    win_name = 'Object detection using ONNXRuntime OpenVINO Execution Provider using YoloV4 model'
    cv2.namedWindow(win_name, cv2.WINDOW_NORMAL)

    output_file = "yolo_out_py.avi"
    if (args.image):
        # Open the image file
        if not os.path.isfile(args.image):
            print("Input image file ", args.image, " doesn't exist")
            sys.exit(1)
        cap = cv2.VideoCapture(args.image)
        output_file = args.image[:-4]+'_yolo_out_py.jpg'
    elif (args.video):
        # Open the video file
        if not os.path.isfile(args.video):
            print("Input video file ", args.video, " doesn't exist")
            sys.exit(1)
        cap = cv2.VideoCapture(args.video)
        output_file = args.video[:-4]+'_yolo_out_py.avi'
    else:
        # Webcam input
        cap = cv2.VideoCapture(0)

    # Get the video writer initialized to save the output video
    if (not args.image):
        vid_writer = cv2.VideoWriter(output_file, cv2.VideoWriter_fourcc('M','J','P','G'), 30, (round(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))))
    
    # Check the device information and create a session
    device = args.device
    so = rt.SessionOptions()
    so.log_severity_level = 3
    if(args.device == 'cpu'):
        print("Device type selected is 'cpu' which is the default CPU Execution Provider (MLAS)")
        #Specify the path to the ONNX model on your machine and register the CPU EP
        sess = rt.InferenceSession(args.model, so, providers=['CPUExecutionProvider'])
    else:
        #Specify the path to the ONNX model on your machine and register the OpenVINO EP
        sess = rt.InferenceSession(args.model, so, providers=['OpenVINOExecutionProvider'], provider_options=[{'device_type' : device}])
        print("Device type selected is: " + device + " using the OpenVINO Execution Provider")
        '''
        other 'device_type' options are: (Any hardware target can be assigned if you have the access to it)
        'CPU_FP32', 'GPU_FP32', 'GPU_FP16', 'MYRIAD_FP16', 'VAD-M_FP16'
        '''

    input_name = sess.get_inputs()[0].name
    
    while cv2.waitKey(1) < 0:
        # get frame from the video
        has_frame, frame = cap.read()
        # Stop the program if reached end of video
        if not has_frame:
            print("Done processing !!!")
            print("Output file is stored as ", output_file)
            has_frame=False
            cv2.waitKey(3000)
            # Release device
            cap.release()
            break
            
        input_size = 416
        original_image = frame
        original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB)
        original_image_size = original_image.shape[:2]

        image_data = image_preprocess(np.copy(original_image), [input_size, input_size])
        image_data = image_data[np.newaxis, ...].astype(np.float32)
    
        outputs = sess.get_outputs()
        output_names = list(map(lambda output: output.name, outputs))

        start = time.time()
        detections = sess.run(output_names, {input_name: image_data})
        end = time.time()
        inference_time = end - start

        pred_bbox = postprocess_bbbox(detections)
        bboxes = postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25)
        bboxes = nms(bboxes, 0.213, method='nms')
        image = draw_bbox(original_image, bboxes)

        cv2.putText(image,device,(10,20),cv2.FONT_HERSHEY_COMPLEX,0.5,(255,255,255),1)
        cv2.putText(image,'FPS: {}'.format(1.0/inference_time),(10,40),cv2.FONT_HERSHEY_COMPLEX,0.5,(255,255,255),1)

        # Write the frame with the detection boxes
        if (args.image):
            cv2.imwrite(output_file, image.astype(np.uint8))
        else:
            vid_writer.write(image.astype(np.uint8))
 
        image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
        cv2.imshow(win_name, image)

if __name__ == "__main__":
  main()
# pip3 install openvino

# Install ONNX Runtime for OpenVINO™ Execution Provider
# pip3 install onnxruntime-openvino==1.11.0

# pip3 install -r requirements.txt
# How to run the sample
# python3 tiny_yolov2_obj_detection_sample.py --h

# Running the ONNXRuntime OpenVINO™ Execution Provider sample
# python3 tiny_yolov2_obj_detection_sample.py --video face-demographics-walking-and-pause.mp4 --model tinyyolov2.onnx --device CPU_FP32

'''
Copyright (C) 2021-2022, Intel Corporation
SPDX-License-Identifier: Apache-2.0
'''

import numpy as np
import onnxruntime as rt
import cv2
import time
import os
import argparse
import platform

if platform.system() == "Windows":
    from openvino import utils
    utils.add_openvino_libs_to_path()

# color look up table for different classes for object detection sample
clut = [(0,0,0),(255,0,0),(255,0,255),(0,0,255),(0,255,0),(0,255,128),
        (128,255,0),(128,128,0),(0,128,255),(128,0,128),
        (255,0,128),(128,0,255),(255,128,128),(128,255,128),(255,255,0),
        (255,128,128),(128,128,255),(255,128,128),(128,255,128),(128,255,128)]

# 20 labels that the tiny-yolov2 model can do the object_detection on
label = ["aeroplane","bicycle","bird","boat","bottle",
         "bus","car","cat","chair","cow","diningtable",
         "dog","horse","motorbike","person","pottedplant",
          "sheep","sofa","train","tvmonitor"]

def parse_arguments():
  parser = argparse.ArgumentParser(description='Object Detection using YOLOv2 in OPENCV using OpenVINO Execution Provider for ONNXRuntime')
  parser.add_argument('--device', default='CPU_FP32', help="Device to perform inference on 'cpu (MLAS)' or on devices supported by OpenVINO-EP [CPU_FP32, GPU_FP32, GPU_FP16, MYRIAD_FP16, VAD-M_FP16].")
  parser.add_argument('--video', help='Path to video file.')
  parser.add_argument('--model', help='Path to model.')
  args = parser.parse_args()
  return args

def sigmoid(x, derivative=False):
  return x*(1-x) if derivative else 1/(1+np.exp(-x))

def softmax(x):
  score_mat_exp = np.exp(np.asarray(x))
  return score_mat_exp / score_mat_exp.sum(0)

def check_model_extension(fp):
  # Split the extension from the path and normalise it to lowercase.
  ext = os.path.splitext(fp)[-1].lower()

  # Now we can simply use != to check for inequality, no need for wildcards.
  if(ext != ".onnx"):
    raise Exception(fp, "is an unknown file format. Use the model ending with .onnx format")
  
  if not os.path.exists(fp):
    raise Exception("[ ERROR ] Path of the onnx model file is Invalid")

def check_video_file_extension(fp):
  # Split the extension from the path and normalise it to lowercase.
  ext = os.path.splitext(fp)[-1].lower()
  # Now we can simply use != to check for inequality, no need for wildcards.
  
  if(ext == ".mp4" or ext == ".avi" or ext == ".mov"):
    pass
  else:
    raise Exception(fp, "is an unknown file format. Use the video file ending with .mp4 or .avi or .mov formats")
  
  if not os.path.exists(fp):
    raise Exception("[ ERROR ] Path of the video file is Invalid")

def image_preprocess(frame):
  in_frame = cv2.resize(frame, (416, 416))
  preprocessed_image = np.asarray(in_frame)
  preprocessed_image = preprocessed_image.astype(np.float32)
  preprocessed_image = preprocessed_image.transpose(2,0,1)
  #Reshaping the input array to align with the input shape of the model
  preprocessed_image = preprocessed_image.reshape(1,3,416,416)
  return preprocessed_image

def postprocess_output(out, frame, x_scale, y_scale, i):
  out = out[0][0]
  num_classes = 20
  anchors = [1.08, 1.19, 3.42, 4.41, 6.63, 11.38, 9.42, 5.11, 16.62, 10.52]
  existing_labels = {l: [] for l in label}

  #Inside this loop we compute the bounding box b for grid cell (cy, cx)
  for cy in range(0,13):
    for cx in range(0,13):
      for b in range(0,5):
      # First we read the tx, ty, width(tw), and height(th) for the bounding box from the out array, as well as the confidence score
        channel = b*(num_classes+5)
        tx = out[channel  ][cy][cx]
        ty = out[channel+1][cy][cx]
        tw = out[channel+2][cy][cx]
        th = out[channel+3][cy][cx]
        tc = out[channel+4][cy][cx]

        x = (float(cx) + sigmoid(tx))*32
        y = (float(cy) + sigmoid(ty))*32
        w = np.exp(tw) * 32 * anchors[2*b]
        h = np.exp(th) * 32 * anchors[2*b+1] 

        #calculating the confidence score
        confidence = sigmoid(tc) # The confidence value for the bounding box is given by tc
        classes = np.zeros(num_classes)
        for c in range(0,num_classes):
          classes[c] = out[channel + 5 +c][cy][cx]
          # we take the softmax to turn the array into a probability distribution. And then we pick the class with the largest score as the winner.
          classes = softmax(classes)
          detected_class = classes.argmax()
          # Now we can compute the final score for this bounding box and we only want to keep the ones whose combined score is over a certain threshold
          if 0.60 < classes[detected_class]*confidence:
            color =clut[detected_class]
            x = (x - w/2)*x_scale
            y = (y - h/2)*y_scale
            w *= x_scale
            h *= y_scale
               
            labelX = int((x+x+w)/2)
            labelY = int((y+y+h)/2)
            addLabel = True
            lab_threshold = 100
            for point in existing_labels[label[detected_class]]:
              if labelX < point[0] + lab_threshold and labelX > point[0] - lab_threshold and \
                 labelY < point[1] + lab_threshold and labelY > point[1] - lab_threshold:
                  addLabel = False
              #Adding class labels to the output of the frame and also drawing a rectangular bounding box around the object detected.
            if addLabel:
              cv2.rectangle(frame, (int(x),int(y)),(int(x+w),int(y+h)),color,2)
              cv2.rectangle(frame, (int(x),int(y-13)),(int(x)+9*len(label[detected_class]),int(y)),color,-1)
              cv2.putText(frame,label[detected_class],(int(x)+2,int(y)-3),cv2.FONT_HERSHEY_COMPLEX,0.4,(255,255,255),1)
              existing_labels[label[detected_class]].append((labelX,labelY))
            print('{} detected in frame {}'.format(label[detected_class],i))
  

def show_bbox(device, frame, inference_time):
  cv2.putText(frame,device,(10,20),cv2.FONT_HERSHEY_COMPLEX,0.5,(255,255,255),1)
  cv2.putText(frame,'FPS: {}'.format(1.0/inference_time),(10,40),cv2.FONT_HERSHEY_COMPLEX,0.5,(255,255,255),1)
  frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
  cv2.imshow('frame',frame)

def main():
  
  # Process arguments
  args = parse_arguments()

  # Validate model file path
  check_model_extension(args.model)
  so = rt.SessionOptions()
  so.log_severity_level = 3
  if (args.device == 'cpu'):
    print("Device type selected is 'cpu' which is the default CPU Execution Provider (MLAS)")
    #Specify the path to the ONNX model on your machine and register the CPU EP
    sess = rt.InferenceSession(args.model, so, providers=['CPUExecutionProvider'])
  elif (args.device == 'CPU_FP32' or args.device == 'GPU_FP32' or args.device == 'GPU_FP16' or args.device == 'MYRIAD_FP16' or args.device == 'VADM_FP16'):
    #Specify the path to the ONNX model on your machine and register the OpenVINO EP
    sess = rt.InferenceSession(args.model, so, providers=['OpenVINOExecutionProvider'], provider_options=[{'device_type' : args.device}])
    print("Device type selected is: " + args.device + " using the OpenVINO Execution Provider")
    '''
    other 'device_type' options are: (Any hardware target can be assigned if you have the access to it)
    'CPU_FP32', 'GPU_FP32', 'GPU_FP16', 'MYRIAD_FP16', 'VAD-M_FP16'
    '''
  else:
    raise Exception("Device type selected is not [cpu, CPU_FP32, GPU_FP32, GPU_FP16, MYRIAD_FP16, VADM_FP16]")

  # Get the input name of the model
  input_name = sess.get_inputs()[0].name

  #validate video file input path
  check_video_file_extension(args.video)

  #Path to video file has to be provided
  cap = cv2.VideoCapture(args.video)

  # capturing different metrics of the image from the video
  fps = cap.get(cv2.CAP_PROP_FPS)
  width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
  height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
  x_scale = float(width)/416.0  #In the document of tino-yolo-v2, input shape of this network is (1,3,416,416).
  y_scale = float(height)/416.0      
 
  # writing the inferencing output as a video to the local disk
  fourcc = cv2.VideoWriter_fourcc(*'XVID')
  output_video_name = args.device + "_output.avi"
  output_video = cv2.VideoWriter(output_video_name,fourcc, float(17.0), (640,360))

  # capturing one frame at a time from the video feed and performing the inference
  i = 0
  while cv2.waitKey(1) < 0:
    l_start = time.time()
    ret, frame = cap.read()
    if not ret:
      break
    initial_w = cap.get(3)
    initial_h = cap.get(4)
        
    # preprocessing the input frame and reshaping it.
    #In the document of tino-yolo-v2, input shape of this network is (1,3,416,416). so we resize the model frame w.r.t that size.
    preprocessed_image =  image_preprocess(frame)

    start = time.time()
    #Running the session by passing in the input data of the model
    out = sess.run(None, {input_name: preprocessed_image})
    end = time.time()
    inference_time = end - start

    #Get the output
    postprocess_output(out, frame, x_scale, y_scale, i)
   
    #Show the Output
    output_video.write(frame)
    show_bbox(args.device, frame, inference_time)
        
    #Press 'q' to quit the process
    print('Processed Frame {}'.format(i))
    i += 1
    l_end = time.time()
    print('Loop Time = {}'.format(l_end - l_start))

  output_video.release()
  cv2.destroyAllWindows()

if __name__ == "__main__":
  main()
# Imports
from collections import namedtuple
from itertools import groupby
from pathlib import Path

import cv2
import matplotlib.pyplot as plt
import numpy as np
from openvino.runtime import Core

# Settings
# Directories where data will be placed
model_folder = "model"
data_folder = "data"
charlist_folder = f"{data_folder}/charlists"

# Precision used by model
precision = "FP16"

Language = namedtuple(
    typename="Language", field_names=["model_name", "charlist_name", "demo_image_name"]
)
chinese_files = Language(
    model_name="handwritten-simplified-chinese-recognition-0001",
    charlist_name="chinese_charlist.txt",
    demo_image_name="handwritten_chinese_test.jpg",
)
japanese_files = Language(
    model_name="handwritten-japanese-recognition-0001",
    charlist_name="japanese_charlist.txt",
    demo_image_name="handwritten_japanese_test.png",
)

# Select Language
# Select language by using either language='chinese' or language='japanese'
language = "chinese"

languages = {"chinese": chinese_files, "japanese": japanese_files}

selected_language = languages.get(language)

# Download Model
path_to_model_weights = Path(f'{model_folder}/intel/{selected_language.model_name}/{precision}/{selected_language.model_name}.bin')
if not path_to_model_weights.is_file():
    download_command = f'omz_downloader --name {selected_language.model_name} --output_dir {model_folder} --precision {precision}'
    print(download_command)
    ! $download_command

# Load Network and Execute
ie = Core()
path_to_model = path_to_model_weights.with_suffix(".xml")
model = ie.read_model(model=path_to_model)

# Select Device Name
# To check available device names run the line below
# print(ie.available_devices)

compiled_model = ie.compile_model(model=model, device_name="CPU")

# Fetch Information About Input and Output Layers
recognition_output_layer = compiled_model.output(0)
recognition_input_layer = compiled_model.input(0)

# Load an Image
# Read file name of demo file based on the selected model

file_name = selected_language.demo_image_name

# Text detection models expects an image in grayscale format
# IMPORTANT!!! This model allows to read only one line at time

# Read image
image = cv2.imread(filename=f"{data_folder}/{file_name}", flags=cv2.IMREAD_GRAYSCALE)

# Fetch shape
image_height, _ = image.shape

# B,C,H,W = batch size, number of channels, height, width
_, _, H, W = recognition_input_layer.shape

# Calculate scale ratio between input shape height and image height to resize image
scale_ratio = H / image_height

# Resize image to expected input sizes
resized_image = cv2.resize(
    image, None, fx=scale_ratio, fy=scale_ratio, interpolation=cv2.INTER_AREA
)

# Pad image to match input size, without changing aspect ratio
resized_image = np.pad(
    resized_image, ((0, 0), (0, W - resized_image.shape[1])), mode="edge"
)

# Reshape to network the input shape
input_image = resized_image[None, None, :, :]

# Visualise Input Image
plt.figure(figsize=(20, 1))
plt.axis("off")
plt.imshow(resized_image, cmap="gray", vmin=0, vmax=255);

# Prepare Charlist
# Get dictionary to encode output, based on model documentation
used_charlist = selected_language.charlist_name

# With both models, there should be blank symbol added at index 0 of each charlist
blank_char = "~"

with open(f"{charlist_folder}/{used_charlist}", "r", encoding="utf-8") as charlist:
    letters = blank_char + "".join(line.strip() for line in charlist)

# Run Inference
# Run inference on the model
predictions = compiled_model([input_image])[recognition_output_layer]

# Process Output Data
# Remove batch dimension
predictions = np.squeeze(predictions)

# Run argmax to pick the symbols with the highest probability
predictions_indexes = np.argmax(predictions, axis=1)

# Use groupby to remove concurrent letters, as required by CTC greedy decoding
output_text_indexes = list(groupby(predictions_indexes))

# Remove grouper objects
output_text_indexes, _ = np.transpose(output_text_indexes, (1, 0))

# Remove blank symbols
output_text_indexes = output_text_indexes[output_text_indexes != 0]

# Assign letters to indexes from output array
output_text = [letters[letter_index] for letter_index in output_text_indexes]

# Print Output
plt.figure(figsize=(20, 1))
plt.axis("off")
plt.imshow(resized_image, cmap="gray", vmin=0, vmax=255)

print("".join(output_text))
# Imports
import shutil
import sys
from pathlib import Path

import cv2
import matplotlib.pyplot as plt
import numpy as np
from IPython.display import Markdown, display
from PIL import Image
from openvino.runtime import Core
from yaspin import yaspin

sys.path.append("../utils")
from notebook_utils import load_image

# Settings
ie = Core()

model_dir = Path("model")
precision = "FP16"
detection_model = "horizontal-text-detection-0001"
recognition_model = "text-recognition-resnet-fc"
base_model_dir = Path("~/open_model_zoo_models").expanduser()
omz_cache_dir = Path("~/open_model_zoo_cache").expanduser()

model_dir.mkdir(exist_ok=True)

# Download Models
download_command = f"omz_downloader --name {detection_model},{recognition_model} --output_dir {base_model_dir} --cache_dir {omz_cache_dir} --precision {precision}"
display(Markdown(f"Download command: `{download_command}`"))
with yaspin(text=f"Downloading {detection_model}, {recognition_model}") as sp:
    download_result = !$download_command
    print(download_result)
    sp.text = f"Finished downloading {detection_model}, {recognition_model}"
    sp.ok("✔")

# Convert Models
convert_command = f"omz_converter --name {recognition_model} --precisions {precision} --download_dir {base_model_dir} --output_dir {base_model_dir}"
display(Markdown(f"Convert command: `{convert_command}`"))
display(Markdown(f"Converting {recognition_model}..."))
! $convert_command

# Copy Models
models_info_output = %sx omz_info_dumper --name $detection_model,$recognition_model
print(f'sx omz_info_dumper --name {detection_model},{recognition_model}')
detection_model_info, recognition_model_info = [
    {
        "name": "horizontal-text-detection-0001",
        "composite_model_name": None,
        "description": "Horizontal text detector based on FCOS with light MobileNetV2 backbone",
        "framework": "dldt",
        "license_url": "https://raw.githubusercontent.com/openvinotoolkit/open_model_zoo/master/LICENSE",
        "precisions": [
            "FP16",
            "FP16-INT8",
            "FP32"
        ],
        "quantization_output_precisions": [],
        "subdirectory": "intel/horizontal-text-detection-0001",
        "task_type": "detection"
    },
    {
        "name": "text-recognition-resnet-fc",
        "composite_model_name": None,
        "description": "\"text-recognition-resnet-fc\" is a simple and preformant scene text recognition model based on ResNet with Fully Connected text recognition head. Source implementation on a PyTorch* framework could be found here <https://github.com/Media-Smart/vedastr>. Model is able to recognize alphanumeric text.",
        "framework": "pytorch",
        "license_url": "https://raw.githubusercontent.com/Media-Smart/vedastr/0fd2a0bd7819ae4daa2a161501e9f1c2ac67e96a/LICENSE",
        "precisions": [
            "FP16",
            "FP32"
        ],
        "quantization_output_precisions": [],
        "subdirectory": "public/text-recognition-resnet-fc",
        "task_type": "optical_character_recognition"
    }
]

for model_info in (detection_model_info, recognition_model_info):
    omz_dir = Path(model_info["subdirectory"])
    omz_model_dir = base_model_dir / omz_dir / precision
    print(omz_model_dir) 
    for model_file in omz_model_dir.iterdir():
        try:
            shutil.copyfile(model_file, model_dir / model_file.name)
        except FileExistsError:
            pass

detection_model_path = (model_dir / detection_model).with_suffix(".xml")
recognition_model_path = (model_dir / recognition_model).with_suffix(".xml")

# Load Detection Model
detection_model = ie.read_model(
    model=detection_model_path, weights=detection_model_path.with_suffix(".bin")
)
detection_compiled_model = ie.compile_model(model=detection_model, device_name="CPU")

detection_input_layer = detection_compiled_model.input(0)

# Load an Image
# image_file can point to a URL or local image
image_file = "https://github.com/openvinotoolkit/openvino_notebooks/raw/main/notebooks/004-hello-detection/data/intel_rnb.jpg"

image = load_image(image_file)

# N,C,H,W = batch size, number of channels, height, width
N, C, H, W = detection_input_layer.shape

# Resize image to meet network expected input sizes
resized_image = cv2.resize(image, (W, H))

# Reshape to network input shape
input_image = np.expand_dims(resized_image.transpose(2, 0, 1), 0)

plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB));

# Do Inference
output_key = detection_compiled_model.output("boxes")
boxes = detection_compiled_model([input_image])[output_key]

# Remove zero only boxes
boxes = boxes[~np.all(boxes == 0, axis=1)]

# Get Detection Results
def multiply_by_ratio(ratio_x, ratio_y, box):
    return [
        max(shape * ratio_y, 10) if idx % 2 else shape * ratio_x
        for idx, shape in enumerate(box[:-1])
    ]


def run_preprocesing_on_crop(crop, net_shape):
    temp_img = cv2.resize(crop, net_shape)
    temp_img = temp_img.reshape((1,) * 2 + temp_img.shape)
    return temp_img


def convert_result_to_image(bgr_image, resized_image, boxes, threshold=0.3, conf_labels=True):
    # Define colors for boxes and descriptions
    colors = {"red": (255, 0, 0), "green": (0, 255, 0), "white": (255, 255, 255)}

    # Fetch image shapes to calculate ratio
    (real_y, real_x), (resized_y, resized_x) = image.shape[:2], resized_image.shape[:2]
    ratio_x, ratio_y = real_x / resized_x, real_y / resized_y

    # Convert base image from bgr to rgb format
    rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB)

    # Iterate through non-zero boxes
    for box, annotation in boxes:
        # Pick confidence factor from last place in array
        conf = box[-1]
        if conf > threshold:
            # Convert float to int and multiply position of each box by x and y ratio
            (x_min, y_min, x_max, y_max) = map(int, multiply_by_ratio(ratio_x, ratio_y, box))

            # Draw box based on position, parameters in rectangle function are: image, start_point, end_point, color, thickness
            cv2.rectangle(rgb_image, (x_min, y_min), (x_max, y_max), colors["green"], 3)

            # Add text to image based on position and confidence, parameters in putText function are: image, text, bottomleft_corner_textfield, font, font_scale, color, thickness, line_type
            if conf_labels:
                # Create background box based on annotation length
                (text_w, text_h), _ = cv2.getTextSize(
                    f"{annotation}", cv2.FONT_HERSHEY_TRIPLEX, 0.8, 1
                )
                image_copy = rgb_image.copy()
                cv2.rectangle(
                    image_copy,
                    (x_min, y_min - text_h - 10),
                    (x_min + text_w, y_min - 10),
                    colors["white"],
                    -1,
                )
                # Add weighted image copy with white boxes under text
                cv2.addWeighted(image_copy, 0.4, rgb_image, 0.6, 0, rgb_image)
                cv2.putText(
                    rgb_image,
                    f"{annotation}",
                    (x_min, y_min - 10),
                    cv2.FONT_HERSHEY_SIMPLEX,
                    0.8,
                    colors["red"],
                    1,
                    cv2.LINE_AA,
                )

    return rgb_image

# Load Text Recognition Model
recognition_model = ie.read_model(
    model=recognition_model_path, weights=recognition_model_path.with_suffix(".bin")
)

recognition_compiled_model = ie.compile_model(model=recognition_model, device_name="CPU")

recognition_output_layer = recognition_compiled_model.output(0)
recognition_input_layer = recognition_compiled_model.input(0)

# Get height and width of input layer
_, _, H, W = recognition_input_layer.shape

# Do Inference
# Calculate scale for image resizing
(real_y, real_x), (resized_y, resized_x) = image.shape[:2], resized_image.shape[:2]
ratio_x, ratio_y = real_x / resized_x, real_y / resized_y

# Convert image to grayscale for text recognition model
grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

# Get dictionary to encode output, based on model documentation
letters = "~0123456789abcdefghijklmnopqrstuvwxyz"

# Prepare empty list for annotations
annotations = list()
cropped_images = list()
# fig, ax = plt.subplots(len(boxes), 1, figsize=(5,15), sharex=True, sharey=True)
# For each crop, based on boxes given by detection model we want to get annotations
for i, crop in enumerate(boxes):
    # Get coordinates on corners of crop
    (x_min, y_min, x_max, y_max) = map(int, multiply_by_ratio(ratio_x, ratio_y, crop))
    image_crop = run_preprocesing_on_crop(grayscale_image[y_min:y_max, x_min:x_max], (W, H))

    # Run inference with recognition model
    result = recognition_compiled_model([image_crop])[recognition_output_layer]

    # Squeeze output to remove unnececery dimension
    recognition_results_test = np.squeeze(result)

    # Read annotation based on probabilities from output layer
    annotation = list()
    for letter in recognition_results_test:
        parsed_letter = letters[letter.argmax()]

        # Returning 0 index from argmax signalises end of string
        if parsed_letter == letters[0]:
            break
        annotation.append(parsed_letter)
    annotations.append("".join(annotation))
    cropped_image = Image.fromarray(image[y_min:y_max, x_min:x_max])
    cropped_images.append(cropped_image)

boxes_with_annotations = list(zip(boxes, annotations))

# Show Detected Text Boxes and OCR Results for the Image
plt.figure(figsize=(12, 12))
plt.imshow(convert_result_to_image(image, resized_image, boxes_with_annotations, conf_labels=True));

# Show the OCR Result per Bounding Box
for cropped_image, annotation in zip(cropped_images, annotations):
    display(cropped_image, Markdown("".join(annotation)))

# Print Annotations in Plain Text Format
[
    annotation
    for _, annotation in sorted(zip(boxes, annotations), key=lambda x: x[0][0] ** 2 + x[0][1] ** 2)
]
# Imports
import operator
import time
from urllib import parse

import numpy as np
from openvino.runtime import Core

import html_reader as reader
import tokens_bert as tokens

# Download the model
# directory where model will be downloaded
base_model_dir = "model"

# desired precision
precision = "FP16-INT8"

# model name as named in Open Model Zoo
model_name = "bert-small-uncased-whole-word-masking-squad-int8-0002"

model_path = f"model/intel/{model_name}/{precision}/{model_name}.xml"
model_weights_path = f"model/intel/{model_name}/{precision}/{model_name}.bin"

download_command = f"omz_downloader " \
                   f"--name {model_name} " \
                   f"--precision {precision} " \
                   f"--output_dir {base_model_dir} " \
                   f"--cache_dir {base_model_dir}"
! $download_command

# Load the model
# initialize inference engine
core = Core()
# read the network and corresponding weights from file
model = core.read_model(model=model_path, weights=model_weights_path)
# load the model on the CPU (you can use GPU as well)
compiled_model = core.compile_model(model=model, device_name="CPU")

# get input and output names of nodes
input_keys = list(compiled_model.inputs)
output_keys = list(compiled_model.outputs)

# get network input size
input_size = compiled_model.input(0).shape[1]

# Processing
# path to vocabulary file
vocab_file_path = "data/vocab.txt"

# create dictionary with words and their indices
vocab = tokens.load_vocab_file(vocab_file_path)

# define special tokens
cls_token = vocab["[CLS]"]
pad_token = vocab["[PAD]"]
sep_token = vocab["[SEP]"]


# function to load text from given urls
def load_context(sources):
    input_urls = []
    paragraphs = []
    for source in sources:
        result = parse.urlparse(source)
        if all([result.scheme, result.netloc]):
            input_urls.append(source)
        else:
            paragraphs.append(source)

    paragraphs.extend(reader.get_paragraphs(input_urls))
    # produce one big context string
    return "\n".join(paragraphs)

# Preprocessing
# generator of a sequence of inputs
def prepare_input(question_tokens, context_tokens):
    # length of question in tokens
    question_len = len(question_tokens)
    # context part size
    context_len = input_size - question_len - 3

    if context_len < 16:
        raise RuntimeError("Question is too long in comparison to input size. No space for context")

    # take parts of context with overlapping by 0.5
    for start in range(0, max(1, len(context_tokens) - context_len), context_len // 2):
        # part of context
        part_context_tokens = context_tokens[start:start + context_len]
        # input: question and context separated by special tokens
        input_ids = [cls_token] + question_tokens + [sep_token] + part_context_tokens + [sep_token]
        # 1 for any index if there is no padding token, 0 otherwise
        attention_mask = [1] * len(input_ids)
        # 0 for question tokens, 1 for context part
        token_type_ids = [0] * (question_len + 2) + [1] * (len(part_context_tokens) + 1)

        # add padding at the end
        (input_ids, attention_mask, token_type_ids), pad_number = pad(input_ids=input_ids,
                                                                      attention_mask=attention_mask,
                                                                      token_type_ids=token_type_ids)

        # create input to feed the model
        input_dict = {
            "input_ids": np.array([input_ids], dtype=np.int32),
            "attention_mask": np.array([attention_mask], dtype=np.int32),
            "token_type_ids": np.array([token_type_ids], dtype=np.int32),
        }

        # some models require additional position_ids
        if "position_ids" in [i_key.any_name for i_key in input_keys]:
            position_ids = np.arange(len(input_ids))
            input_dict["position_ids"] = np.array([position_ids], dtype=np.int32)

        yield input_dict, pad_number, start


# function to add padding
def pad(input_ids, attention_mask, token_type_ids):
    # how many padding tokens
    diff_input_size = input_size - len(input_ids)

    if diff_input_size > 0:
        # add padding to all inputs
        input_ids = input_ids + [pad_token] * diff_input_size
        attention_mask = attention_mask + [0] * diff_input_size
        token_type_ids = token_type_ids + [0] * diff_input_size

    return (input_ids, attention_mask, token_type_ids), diff_input_size

# Postprocessing
# based on https://github.com/openvinotoolkit/open_model_zoo/blob/bf03f505a650bafe8da03d2747a8b55c5cb2ef16/demos/common/python/openvino/model_zoo/model_api/models/bert.py#L163
def postprocess(output_start, output_end, question_tokens, context_tokens_start_end, padding, start_idx):

    def get_score(logits):
        out = np.exp(logits)
        return out / out.sum(axis=-1)

    # get start-end scores for context
    score_start = get_score(output_start)
    score_end = get_score(output_end)

    # index of first context token in tensor
    context_start_idx = len(question_tokens) + 2
    # index of last+1 context token in tensor
    context_end_idx = input_size - padding - 1

    # find product of all start-end combinations to find the best one
    max_score, max_start, max_end = find_best_answer_window(start_score=score_start,
                                                            end_score=score_end,
                                                            context_start_idx=context_start_idx,
                                                            context_end_idx=context_end_idx)

    # convert to context text start-end index
    max_start = context_tokens_start_end[max_start + start_idx][0]
    max_end = context_tokens_start_end[max_end + start_idx][1]

    return max_score, max_start, max_end


# based on https://github.com/openvinotoolkit/open_model_zoo/blob/bf03f505a650bafe8da03d2747a8b55c5cb2ef16/demos/common/python/openvino/model_zoo/model_api/models/bert.py#L188
def find_best_answer_window(start_score, end_score, context_start_idx, context_end_idx):
    context_len = context_end_idx - context_start_idx
    score_mat = np.matmul(
        start_score[context_start_idx:context_end_idx].reshape((context_len, 1)),
        end_score[context_start_idx:context_end_idx].reshape((1, context_len)),
    )
    # reset candidates with end before start
    score_mat = np.triu(score_mat)
    # reset long candidates (>16 words)
    score_mat = np.tril(score_mat, 16)
    # find the best start-end pair
    max_s, max_e = divmod(score_mat.flatten().argmax(), score_mat.shape[1])
    max_score = score_mat[max_s, max_e]

    return max_score, max_s, max_e

def get_best_answer(question, context):
    # convert context string to tokens
    context_tokens, context_tokens_start_end = tokens.text_to_tokens(text=context.lower(),
                                                                     vocab=vocab)
    # convert question string to tokens
    question_tokens, _ = tokens.text_to_tokens(text=question.lower(), vocab=vocab)

    results = []
    # iterate through different parts of context
    for network_input, padding, start_idx in prepare_input(question_tokens=question_tokens,
                                                           context_tokens=context_tokens):
        # get output layers
        output_start_key = compiled_model.output("output_s")
        output_end_key = compiled_model.output("output_e")

        # openvino inference
        result = compiled_model(network_input)
        # postprocess the result getting the score and context range for the answer
        score_start_end = postprocess(output_start=result[output_start_key][0],
                                      output_end=result[output_end_key][0],
                                      question_tokens=question_tokens,
                                      context_tokens_start_end=context_tokens_start_end,
                                      padding=padding,
                                      start_idx=start_idx)
        results.append(score_start_end)

    # find the highest score
    answer = max(results, key=operator.itemgetter(0))
    # return the part of the context, which is already an answer
    return context[answer[1]:answer[2]], answer[0]

# Main Processing Function
def run_question_answering(sources):
    print(f"Context: {sources}", flush=True)
    context = load_context(sources)

    if len(context) == 0:
        print("Error: Empty context or outside paragraphs")
        return

    while True:
        question = input()
        # if no question - break
        if question == "":
            break

        # measure processing time
        start_time = time.perf_counter()
        answer, score = get_best_answer(question=question, context=context)
        end_time = time.perf_counter()

        print(f"Question: {question}")
        print(f"Answer: {answer}")
        print(f"Score: {score:.2f}")
        print(f"Time: {end_time - start_time:.2f}s")

# Run on local paragraphs
sources = ["Computational complexity theory is a branch of the theory of computation in theoretical computer "
           "science that focuses on classifying computational problems according to their inherent difficulty, "
           "and relating those classes to each other. A computational problem is understood to be a task that "
           "is in principle amenable to being solved by a computer, which is equivalent to stating that the "
           "problem may be solved by mechanical application of mathematical steps, such as an algorithm."]

run_question_answering(sources)

# Run on websites
sources = ["https://en.wikipedia.org/wiki/OpenVINO"]

run_question_answering(sources)
# Imports
from pathlib import Path

import IPython.display as ipd
import librosa
import librosa.display
import matplotlib.pyplot as plt
import numpy as np
import scipy
from openvino.runtime import Core

# Settings
model_folder = "model"
download_folder = "output"
data_folder = "data"

precision = "FP16"
model_name = "quartznet-15x5-en"

# Download Model
# Check if model is already downloaded in download directory
path_to_model_weights = Path(f'{download_folder}/public/{model_name}/models')
downloaded_model_file = list(path_to_model_weights.glob('*.pth'))

if not path_to_model_weights.is_dir() or len(downloaded_model_file) == 0:
    download_command = f"omz_downloader --name {model_name} --output_dir {download_folder} --precision {precision}"
    ! $download_command

# Convert Model
# Check if model is already converted in model directory
path_to_converted_weights = Path(f'{model_folder}/public/{model_name}/{precision}/{model_name}.bin')

if not path_to_converted_weights.is_file():
    convert_command = f"omz_converter --name {model_name} --precisions {precision} --download_dir {download_folder} --output_dir {model_folder}"
    ! $convert_command

# Defining constants
audio_file_name = "edge_to_cloud.ogg"
alphabet = " abcdefghijklmnopqrstuvwxyz'~"

# Load Audio File
audio, sampling_rate = librosa.load(path=f'{data_folder}/{audio_file_name}', sr=16000)
ipd.Audio(audio, rate=sampling_rate)

# Visualise Audio File
plt.figure()
librosa.display.waveplot(y=audio, sr=sampling_rate, max_points=50000.0, x_axis='time', offset=0.0, max_sr=1000);
plt.show()
specto_audio = librosa.stft(audio)
specto_audio = librosa.amplitude_to_db(np.abs(specto_audio), ref=np.max)
print(specto_audio.shape)
librosa.display.specshow(specto_audio, sr=sampling_rate, x_axis='time', y_axis='hz');

# Change Type of Data
if max(np.abs(audio)) <= 1:
    audio = (audio * (2**15 - 1))
audio = audio.astype(np.int16)

# Convert Audio to Mel Spectrum
def audio_to_mel(audio, sampling_rate):
    assert sampling_rate == 16000, "Only 16 KHz audio supported"
    preemph = 0.97
    preemphased = np.concatenate([audio[:1], audio[1:] - preemph * audio[:-1].astype(np.float32)])

    # Calculate window length
    win_length = round(sampling_rate * 0.02)

    # Based on previously calculated window length run short-time Fourier transform
    spec = np.abs(librosa.core.spectrum.stft(preemphased, n_fft=512, hop_length=round(sampling_rate * 0.01),
                  win_length=win_length, center=True, window=scipy.signal.windows.hann(win_length), pad_mode='reflect'))

    # Create mel filter-bank, produce transformation matrix to project current values onto Mel-frequency bins
    mel_basis = librosa.filters.mel(sampling_rate, 512, n_mels=64, fmin=0.0, fmax=8000.0, htk=False)
    return mel_basis, spec


def mel_to_input(mel_basis, spec, padding=16):
    # Convert to logarithmic scale
    log_melspectrum = np.log(np.dot(mel_basis, np.power(spec, 2)) + 2 ** -24)

    # Normalize output
    normalized = (log_melspectrum - log_melspectrum.mean(1)[:, None]) / (log_melspectrum.std(1)[:, None] + 1e-5)

    # Calculate padding
    remainder = normalized.shape[1] % padding
    if remainder != 0:
        return np.pad(normalized, ((0, 0), (0, padding - remainder)))[None]
    return normalized[None]

# Run Conversion from Audio to Mel Format
mel_basis, spec = audio_to_mel(audio=audio.flatten(), sampling_rate=sampling_rate)

# Visualise Mel Spectogram
librosa.display.specshow(data=spec, sr=sampling_rate, x_axis='time', y_axis='log');
plt.show();
librosa.display.specshow(data=mel_basis, sr=sampling_rate, x_axis='linear');
plt.ylabel('Mel filter');

# Adjust Mel scale to Input
audio = mel_to_input(mel_basis=mel_basis, spec=spec)

# Load Model
ie = Core()

model = ie.read_model(
    model=f"{model_folder}/public/{model_name}/{precision}/{model_name}.xml"
)
model_input_layer = model.input(0)
shape = model_input_layer.partial_shape
shape[2] = -1
model.reshape({model_input_layer: shape})
compiled_model = ie.compile_model(model=model, device_name="CPU")

# Do Inference
output_layer_ir = compiled_model.output(0)

character_probabilities = compiled_model([audio])[output_layer_ir]

# Read Output
# Remove unnececery dimension
character_probabilities = np.squeeze(character_probabilities)

# Run argmax to pick most possible symbols
character_probabilities = np.argmax(character_probabilities, axis=1)

# Implementation of Decoding
def ctc_greedy_decode(predictions):
    previous_letter_id = blank_id = len(alphabet) - 1
    transcription = list()
    for letter_index in predictions:
        if previous_letter_id != letter_index != blank_id:
            transcription.append(alphabet[letter_index])
        previous_letter_id = letter_index
    return ''.join(transcription)

# Run Decoding and Print Output
transcription = ctc_greedy_decode(character_probabilities)
print(transcription)
# Imports
import collections
import os
import sys
import time
from typing import Tuple, List

import cv2
import numpy as np
from IPython import display
from openvino.runtime import Core
from openvino.runtime.ie_api import CompiledModel

sys.path.append("../utils")
import notebook_utils as utils

# Download the models
# Directory where model will be downloaded
base_model_dir = "model"
# Model name as named in Open Model Zoo
model_name = "action-recognition-0001"
# Selected precision (FP32, FP16, FP16-INT8)
precision = "FP16"
model_path_decoder = (
    f"model/intel/{model_name}/{model_name}-decoder/{precision}/{model_name}-decoder.xml"
)
model_path_encoder = (
    f"model/intel/{model_name}/{model_name}-encoder/{precision}/{model_name}-encoder.xml"
)
if not os.path.exists(model_path_decoder) or not os.path.exists(model_path_encoder):
    download_command = f"omz_downloader " \
                       f"--name {model_name} " \
                       f"--precision {precision} " \
                       f"--output_dir {base_model_dir}"
    ! $download_command

# Load your labels
labels = "data/kinetics.txt"

with open(labels) as f:
    labels = [line.strip() for line in f]

print(labels[0:9], np.shape(labels))

# Model Initialization function
# Initialize inference engine
ie_core = Core()


def model_init(model_path: str) -> Tuple:
    """
    Read the network and weights from file, load the
    model on the CPU and get input and output names of nodes

    :param: model: model architecture path *.xml
    :retuns:
            compiled_model: Compiled model 
            input_key: Input node for model
            output_key: Output node for model
    """

    # Read the network and corresponding weights from file
    model = ie_core.read_model(model=model_path)
    # compile the model for the CPU (you can use GPU or MYRIAD as well)
    compiled_model = ie_core.compile_model(model=model, device_name="CPU")
    # Get input and output names of nodes
    input_keys = compiled_model.input(0)
    output_keys = compiled_model.output(0)
    return input_keys, output_keys, compiled_model

# Initialization for Encoder and Decoder
# Encoder initialization
input_key_en, output_keys_en, compiled_model_en = model_init(model_path_encoder)
# Decoder initialization
input_key_de, output_keys_de, compiled_model_de = model_init(model_path_decoder)

# Get input size - Encoder
height_en, width_en = list(input_key_en.shape)[2:]
# Get input size - Decoder
frames2decode = list(input_key_de.shape)[0:][1]

# Helper functions
def center_crop(frame: np.ndarray) -> np.ndarray:
    """
    Center crop squared the original frame to standardize the input image to the encoder model

    :param frame: input frame
    :returns: center-crop-squared frame
    """
    img_h, img_w, _ = frame.shape
    min_dim = min(img_h, img_w)
    start_x = int((img_w - min_dim) / 2.0)
    start_y = int((img_h - min_dim) / 2.0)
    roi = [start_y, (start_y + min_dim), start_x, (start_x + min_dim)]
    return frame[start_y : (start_y + min_dim), start_x : (start_x + min_dim), ...], roi


def adaptive_resize(frame: np.ndarray, size: int) -> np.ndarray:
    """
     The frame going to be resized to have a height of size or a width of size

    :param frame: input frame
    :param size: input size to encoder model
    :returns: resized frame, np.array type
    """
    h, w, _ = frame.shape
    scale = size / min(h, w)
    w_scaled, h_scaled = int(w * scale), int(h * scale)
    if w_scaled == w and h_scaled == h:
        return frame
    return cv2.resize(frame, (w_scaled, h_scaled))


def decode_output(probs: np.ndarray, labels: np.ndarray, top_k: int = 3) -> np.ndarray:
    """
    Decodes top probabilities into corresponding label names

    :param probs: confidence vector for 400 actions
    :param labels: list of actions
    :param top_k: The k most probable positions in the list of labels
    :returns: decoded_labels: The k most probable actions from the labels list
              decoded_top_probs: confidence for the k most probable actions
    """
    top_ind = np.argsort(-1 * probs)[:top_k]
    out_label = np.array(labels)[top_ind.astype(int)]
    decoded_labels = [out_label[0][0], out_label[0][1], out_label[0][2]]
    top_probs = np.array(probs)[0][top_ind.astype(int)]
    decoded_top_probs = [top_probs[0][0], top_probs[0][1], top_probs[0][2]]
    return decoded_labels, decoded_top_probs


def rec_frame_display(frame: np.ndarray, roi) -> np.ndarray:
    """
    Draw a rec frame over actual frame

    :param frame: input frame
    :param roi: Region of interest, image section processed by the Encoder
    :returns: frame with drawed shape

    """

    cv2.line(frame, (roi[2] + 3, roi[0] + 3), (roi[2] + 3, roi[0] + 100), (0, 200, 0), 2)
    cv2.line(frame, (roi[2] + 3, roi[0] + 3), (roi[2] + 100, roi[0] + 3), (0, 200, 0), 2)
    cv2.line(frame, (roi[3] - 3, roi[1] - 3), (roi[3] - 3, roi[1] - 100), (0, 200, 0), 2)
    cv2.line(frame, (roi[3] - 3, roi[1] - 3), (roi[3] - 100, roi[1] - 3), (0, 200, 0), 2)
    cv2.line(frame, (roi[3] - 3, roi[0] + 3), (roi[3] - 3, roi[0] + 100), (0, 200, 0), 2)
    cv2.line(frame, (roi[3] - 3, roi[0] + 3), (roi[3] - 100, roi[0] + 3), (0, 200, 0), 2)
    cv2.line(frame, (roi[2] + 3, roi[1] - 3), (roi[2] + 3, roi[1] - 100), (0, 200, 0), 2)
    cv2.line(frame, (roi[2] + 3, roi[1] - 3), (roi[2] + 100, roi[1] - 3), (0, 200, 0), 2)
    # Write ROI over actual frame
    FONT_STYLE = cv2.FONT_HERSHEY_SIMPLEX
    org = (roi[2] + 3, roi[1] - 3)
    org2 = (roi[2] + 2, roi[1] - 2)
    FONT_SIZE = 0.5
    FONT_COLOR = (0, 200, 0)
    FONT_COLOR2 = (0, 0, 0)
    cv2.putText(frame, "ROI", org2, FONT_STYLE, FONT_SIZE, FONT_COLOR2)
    cv2.putText(frame, "ROI", org, FONT_STYLE, FONT_SIZE, FONT_COLOR)
    return frame


def display_text_fnc(frame: np.ndarray, display_text: str, index: int):
    """
    Include text on the analized frame

    :param frame: input frame
    :param display_text: text to add on the frame
    :param index: index line dor adding text

    """
    # Configuration for displaying images with text
    FONT_COLOR = (255, 255, 255)
    FONT_COLOR2 = (0, 0, 0)
    FONT_STYLE = cv2.FONT_HERSHEY_DUPLEX
    FONT_SIZE = 0.7
    TEXT_VERTICAL_INTERVAL = 25
    TEXT_LEFT_MARGIN = 15
    # ROI over actual frame
    (processed, roi) = center_crop(frame)
    # Draw a ROI over actual frame
    frame = rec_frame_display(frame, roi)
    # Put text over actual frame
    text_loc = (TEXT_LEFT_MARGIN, TEXT_VERTICAL_INTERVAL * (index + 1))
    text_loc2 = (TEXT_LEFT_MARGIN + 1, TEXT_VERTICAL_INTERVAL * (index + 1) + 1)
    cv2.putText(frame, display_text, text_loc2, FONT_STYLE, FONT_SIZE, FONT_COLOR2)
    cv2.putText(frame, display_text, text_loc, FONT_STYLE, FONT_SIZE, FONT_COLOR)

# AI Functions
def preprocessing(frame: np.ndarray, size: int) -> np.ndarray:
    """
    Preparing frame before Encoder.
    The image should be scaled to its shortest dimension at "size"
    and cropped, centered, and squared so that both width and
    height have lengths "size". Frame must be transposed from
    Height-Width-Channels (HWC) to Channels-Height-Width (CHW).

    :param frame: input frame
    :param size: input size to encoder model
    :returns: resized and cropped frame
    """
    # Adaptative resize
    preprocessed = adaptive_resize(frame, size)
    # Center_crop
    (preprocessed, roi) = center_crop(preprocessed)
    # Transpose frame HWC -> CHW
    preprocessed = preprocessed.transpose((2, 0, 1))[None,]  # HWC -> CHW
    return preprocessed, roi


def encoder(
    preprocessed: np.ndarray,
    compiled_model: CompiledModel
) -> List:
    """
    Encoder Inference per frame. This function calls the network previously
    configured for the encoder model (compiled_model), extracts the data
    from the output node, and appends it in an array to be used by the decoder.

    :param: preprocessed: preprocessing frame
    :param: compiled_model: Encoder model network
    :returns: encoder_output: embedding layer that is appended with each arriving frame
    """
    output_key_en = compiled_model.output(0)
    
    # Get results on action-recognition-0001-encoder model
    infer_result_encoder = compiled_model([preprocessed])[output_key_en]
    return infer_result_encoder


def decoder(encoder_output: List, compiled_model_de: CompiledModel) -> List:
    """
    Decoder inference per set of frames. This function concatenates the embedding layer
    froms the encoder output, transpose the array to match with the decoder input size.
    Calls the network previously configured for the decoder model (compiled_model_de), extracts
    the logits and normalize those to get confidence values along specified axis.
    Decodes top probabilities into corresponding label names

    :param: encoder_output: embedding layer for 16 frames
    :param: compiled_model_de: Decoder model network
    :returns: decoded_labels: The k most probable actions from the labels list
              decoded_top_probs: confidence for the k most probable actions
    """
    # Concatenate sample_duration frames in just one array
    decoder_input = np.concatenate(encoder_output, axis=0)
    # Organize input shape vector to the Decoder (shape: [1x16x512]]
    decoder_input = decoder_input.transpose((2, 0, 1, 3))
    decoder_input = np.squeeze(decoder_input, axis=3)
    output_key_de = compiled_model_de.output(0)
    # Get results on action-recognition-0001-decoder model
    result_de = compiled_model_de([decoder_input])[output_key_de]
    # Normalize logits to get confidence values along specified axis
    probs = softmax(result_de - np.max(result_de))
    # Decodes top probabilities into corresponding label names
    decoded_labels, decoded_top_probs = decode_output(probs, labels, top_k=3)
    return decoded_labels, decoded_top_probs


def softmax(x: np.ndarray) -> np.ndarray:
    """
    Normalizes logits to get confidence values along specified axis
    x: np.array, axis=None
    """
    exp = np.exp(x)
    return exp / np.sum(exp, axis=None)

# Main Processing Function
def run_action_recognition(
    source: str = "0",
    flip: bool = True,
    use_popup: bool = False,
    compiled_model_en: CompiledModel = compiled_model_en,
    compiled_model_de: CompiledModel = compiled_model_de,
    skip_first_frames: int = 0,
):
    """
    Use the "source" webcam or video file to run the complete pipeline for action-recognition problem
    1. Create a video player to play with target fps
    2. Prepare a set of frames to be encoded-decoded
    3. Preprocess frame before Encoder
    4. Encoder Inference per frame
    5. Decoder inference per set of frames
    6. Visualize the results

    :param: source: webcam "0" or video path
    :param: flip: to be used by VideoPlayer function for flipping capture image
    :param: use_popup: False for showing encoded frames over this notebook, True for creating a popup window.
    :param: skip_first_frames: Number of frames to skip at the beginning of the video.
    :returns: display video over the notebook or in a popup window

    """
    size = height_en  # Endoder input size - From Cell 5_9
    sample_duration = frames2decode  # Decoder input size - From Cell 5_7
    # Select frames per second of your source
    fps = 30
    player = None
    try:
        # Create a video player
        player = utils.VideoPlayer(source, flip=flip, fps=fps, skip_first_frames=skip_first_frames)
        # Start capturing
        player.start()
        if use_popup:
            title = "Press ESC to Exit"
            cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)

        processing_times = collections.deque()
        processing_time = 0
        encoder_output = []
        decoded_labels = [0, 0, 0]
        decoded_top_probs = [0, 0, 0]
        counter = 0
        # Create a text template to show inference results over video
        text_inference_template = "Infer Time:{Time:.1f}ms,{fps:.1f}FPS"
        text_template = "{label},{conf:.2f}%"

        while True:
            counter = counter + 1

            # read a frame from the video stream
            frame = player.next()
            if frame is None:
                print("Source ended")
                break

            scale = 1280 / max(frame.shape)

            # Adaptative resize for visualization
            if scale < 1:
                frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

            # Select one frame every two for processing through the encoder.
            # After 16 frames are processed, the decoder will find the action,
            # and the label will be printed over the frames.

            if counter % 2 == 0:
                # Preprocess frame before Encoder
                (preprocessed, _) = preprocessing(frame, size)

                # Measure processing time
                start_time = time.time()

                # Encoder Inference per frame
                encoder_output.append(encoder(preprocessed, compiled_model_en))

                # Decoder inference per set of frames
                # Wait for sample duration to work with decoder model
                if len(encoder_output) == sample_duration:
                    decoded_labels, decoded_top_probs = decoder(encoder_output, compiled_model_de)
                    encoder_output = []

                # Inference has finished ... Let's to display results
                stop_time = time.time()

                # Calculate processing time
                processing_times.append(stop_time - start_time)

                # Use processing times from last 200 frames
                if len(processing_times) > 200:
                    processing_times.popleft()

                # Mean processing time [ms]
                processing_time = np.mean(processing_times) * 1000
                fps = 1000 / processing_time

            # Visualize the results
            for i in range(0, 3):
                display_text = text_template.format(
                    label=decoded_labels[i],
                    conf=decoded_top_probs[i] * 100,
                )
                display_text_fnc(frame, display_text, i)

            display_text = text_inference_template.format(Time=processing_time, fps=fps)
            display_text_fnc(frame, display_text, 3)

            # Use this workaround you experience flickering
            if use_popup:
                cv2.imshow(title, frame)
                key = cv2.waitKey(1)
                # escape = 27
                if key == 27:
                    break
            else:
                # Encode numpy array to jpg
                _, encoded_img = cv2.imencode(".jpg", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])
                # Create IPython image
                i = display.Image(data=encoded_img)
                # Display the image in this notebook
                display.clear_output(wait=True)
                display.display(i)

    # ctrl-c
    except KeyboardInterrupt:
        print("Interrupted")
    # Any different error
    except RuntimeError as e:
        print(e)
    finally:
        if player is not None:
            # stop capturing
            player.stop()
        if use_popup:
            cv2.destroyAllWindows()

# Run Action Recognition on a Video File
video_file = "https://archive.org/serve/ISSVideoResourceLifeOnStation720p/ISS%20Video%20Resource_LifeOnStation_720p.mp4"
run_action_recognition(source=video_file, flip=False, use_popup=False, skip_first_frames=600)

# Run Action Recognition using your webcam
run_action_recognition(source=0, flip=False, use_popup=False, skip_first_frames=0)
# Imports
import collections
import os
import sys
import time

import cv2
import numpy as np
from IPython import display
from numpy.lib.stride_tricks import as_strided
from openvino.runtime import Core

from decoder import OpenPoseDecoder

sys.path.append("../utils")
import notebook_utils as utils

# Download the model
# directory where model will be downloaded
base_model_dir = "model"

# model name as named in Open Model Zoo
model_name = "human-pose-estimation-0001"
# selected precision (FP32, FP16, FP16-INT8)
precision = "FP16-INT8"

model_path = f"model/intel/{model_name}/{precision}/{model_name}.xml"
model_weights_path = f"model/intel/{model_name}/{precision}/{model_name}.bin"

if not os.path.exists(model_path):
    download_command = f"omz_downloader " \
                       f"--name {model_name} " \
                       f"--precision {precision} " \
                       f"--output_dir {base_model_dir}"
    ! $download_command

# Load the model
# initialize inference engine
ie_core = Core()
# read the network and corresponding weights from file
model = ie_core.read_model(model=model_path, weights=model_weights_path)
# load the model on the CPU (you can use GPU or MYRIAD as well)
compiled_model = ie_core.compile_model(model=model, device_name="CPU")

# get input and output names of nodes
input_layer = compiled_model.input(0)
output_layers = list(compiled_model.outputs)

# get input size
height, width = list(input_layer.shape)[2:]

# Processing OpenPoseDecoder
decoder = OpenPoseDecoder()

# Process Results
# 2d pooling in numpy (from: htt11ps://stackoverflow.com/a/54966908/1624463)
def pool2d(A, kernel_size, stride, padding, pool_mode="max"):
    """
    2D Pooling

    Parameters:
        A: input 2D array
        kernel_size: int, the size of the window
        stride: int, the stride of the window
        padding: int, implicit zero paddings on both sides of the input
        pool_mode: string, 'max' or 'avg'
    """
    # Padding
    A = np.pad(A, padding, mode="constant")

    # Window view of A
    output_shape = (
        (A.shape[0] - kernel_size) // stride + 1,
        (A.shape[1] - kernel_size) // stride + 1,
    )
    kernel_size = (kernel_size, kernel_size)
    A_w = as_strided(
        A,
        shape=output_shape + kernel_size,
        strides=(stride * A.strides[0], stride * A.strides[1]) + A.strides
    )
    A_w = A_w.reshape(-1, *kernel_size)

    # Return the result of pooling
    if pool_mode == "max":
        return A_w.max(axis=(1, 2)).reshape(output_shape)
    elif pool_mode == "avg":
        return A_w.mean(axis=(1, 2)).reshape(output_shape)


# non maximum suppression
def heatmap_nms(heatmaps, pooled_heatmaps):
    return heatmaps * (heatmaps == pooled_heatmaps)


# get poses from results
def process_results(img, pafs, heatmaps):
    # this processing comes from
    # https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/models/open_pose.py
    pooled_heatmaps = np.array(
        [[pool2d(h, kernel_size=3, stride=1, padding=1, pool_mode="max") for h in heatmaps[0]]]
    )
    nms_heatmaps = heatmap_nms(heatmaps, pooled_heatmaps)

    # decode poses
    poses, scores = decoder(heatmaps, nms_heatmaps, pafs)
    output_shape = list(compiled_model.output(index=0).partial_shape)
    output_scale = img.shape[1] / output_shape[3].get_length(), img.shape[0] / output_shape[2].get_length()
    # multiply coordinates by scaling factor
    poses[:, :, :2] *= output_scale
    return poses, scores

# Draw Pose Overlays
colors = ((255, 0, 0), (255, 0, 255), (170, 0, 255), (255, 0, 85), (255, 0, 170), (85, 255, 0),
          (255, 170, 0), (0, 255, 0), (255, 255, 0), (0, 255, 85), (170, 255, 0), (0, 85, 255),
          (0, 255, 170), (0, 0, 255), (0, 255, 255), (85, 0, 255), (0, 170, 255))

default_skeleton = ((15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11), (6, 12), (5, 6), (5, 7),
                    (6, 8), (7, 9), (8, 10), (1, 2), (0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6))


def draw_poses(img, poses, point_score_threshold, skeleton=default_skeleton):
    if poses.size == 0:
        return img

    img_limbs = np.copy(img)
    for pose in poses:
        points = pose[:, :2].astype(np.int32)
        points_scores = pose[:, 2]
        # Draw joints.
        for i, (p, v) in enumerate(zip(points, points_scores)):
            if v > point_score_threshold:
                cv2.circle(img, tuple(p), 1, colors[i], 2)
        # Draw limbs.
        for i, j in skeleton:
            if points_scores[i] > point_score_threshold and points_scores[j] > point_score_threshold:
                cv2.line(img_limbs, tuple(points[i]), tuple(points[j]), color=colors[j], thickness=4)
    cv2.addWeighted(img, 0.4, img_limbs, 0.6, 0, dst=img)
    return img

# Main Processing Function
# main processing function to run pose estimation
def run_pose_estimation(source=0, flip=False, use_popup=False, skip_first_frames=0):
    pafs_output_key = compiled_model.output("Mconv7_stage2_L1")
    heatmaps_output_key = compiled_model.output("Mconv7_stage2_L2")
    player = None
    try:
        # create video player to play with target fps
        player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_first_frames)
        # start capturing
        player.start()
        if use_popup:
            title = "Press ESC to Exit"
            cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)

        processing_times = collections.deque()

        while True:
            # grab the frame
            frame = player.next()
            if frame is None:
                print("Source ended")
                break
            # if frame larger than full HD, reduce size to improve the performance
            scale = 1280 / max(frame.shape)
            if scale < 1:
                frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

            # resize image and change dims to fit neural network input
            # (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/human-pose-estimation-0001)
            input_img = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA)
            # create batch of images (size = 1)
            input_img = input_img.transpose((2,0,1))[np.newaxis, ...]

            # measure processing time
            start_time = time.time()
            # get results
            results = compiled_model([input_img])
            stop_time = time.time()

            pafs = results[pafs_output_key]
            heatmaps = results[heatmaps_output_key]
            # get poses from network results
            poses, scores = process_results(frame, pafs, heatmaps)

            # draw poses on a frame
            frame = draw_poses(frame, poses, 0.1)

            processing_times.append(stop_time - start_time)
            # use processing times from last 200 frames
            if len(processing_times) > 200:
                processing_times.popleft()

            _, f_width = frame.shape[:2]
            # mean processing time [ms]
            processing_time = np.mean(processing_times) * 1000
            fps = 1000 / processing_time
            cv2.putText(frame, f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)", (20, 40),
                        cv2.FONT_HERSHEY_COMPLEX, f_width / 1000, (0, 0, 255), 1, cv2.LINE_AA)

            # use this workaround if there is flickering
            if use_popup:
                cv2.imshow(title, frame)
                key = cv2.waitKey(1)
                # escape = 27
                if key == 27:
                    break
            else:
                # encode numpy array to jpg
                _, encoded_img = cv2.imencode(".jpg", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])
                # create IPython image
                i = display.Image(data=encoded_img)
                # display the image in this notebook
                display.clear_output(wait=True)
                display.display(i)
    # ctrl-c
    except KeyboardInterrupt:
        print("Interrupted")
    # any different error
    except RuntimeError as e:
        print(e)
    finally:
        if player is not None:
            # stop capturing
            player.stop()
        if use_popup:
            cv2.destroyAllWindows()

# Run Live Pose Estimation
run_pose_estimation(source=0, flip=True, use_popup=False)

# Run Pose Estimation on a Video File
video_file = "https://github.com/intel-iot-devkit/sample-videos/blob/master/store-aisle-detection.mp4?raw=true"

run_pose_estimation(video_file, flip=False, use_popup=False, skip_first_frames=500)
# Imports
import collections
import os
import sys
import time

import cv2
import numpy as np
from IPython import display
from openvino.runtime import Core

sys.path.append("../utils")
import notebook_utils as utils

# Download the Model
# directory where model will be downloaded
base_model_dir = "model"

# model name as named in Open Model Zoo
model_name = "ssdlite_mobilenet_v2"

download_command = f"omz_downloader " \
                   f"--name {model_name} " \
                   f"--output_dir {base_model_dir} " \
                   f"--cache_dir {base_model_dir}"
! $download_command

# Convert the Model
precision = "FP16"

# output path for the conversion
converted_model_path = f"model/public/{model_name}/{precision}/{model_name}.xml"

if not os.path.exists(converted_model_path):
    convert_command = f"omz_converter " \
                      f"--name {model_name} " \
                      f"--download_dir {base_model_dir} " \
                      f"--precisions {precision}"
    ! $convert_command

# Load the Model
# initialize inference engine
ie_core = Core()
# read the network and corresponding weights from file
model = ie_core.read_model(model=converted_model_path)
# compile the model for the CPU (you can choose manually CPU, GPU, MYRIAD etc.)
# or let the engine choose the best available device (AUTO)
compiled_model = ie_core.compile_model(model=model, device_name="CPU")

# get input and output nodes
input_layer = compiled_model.input(0)
output_layer = compiled_model.output(0)

# get input size
height, width = list(input_layer.shape)[1:3]

# Process Results
# https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/
classes = [
    "background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train",
    "truck", "boat", "traffic light", "fire hydrant", "street sign", "stop sign",
    "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant",
    "bear", "zebra", "giraffe", "hat", "backpack", "umbrella", "shoe", "eye glasses",
    "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite",
    "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle",
    "plate", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple",
    "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair",
    "couch", "potted plant", "bed", "mirror", "dining table", "window", "desk", "toilet",
    "door", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven",
    "toaster", "sink", "refrigerator", "blender", "book", "clock", "vase", "scissors",
    "teddy bear", "hair drier", "toothbrush", "hair brush"
]

# colors for above classes (Rainbow Color Map)
colors = cv2.applyColorMap(
    src=np.arange(0, 255, 255 / len(classes), dtype=np.float32).astype(np.uint8),
    colormap=cv2.COLORMAP_RAINBOW,
).squeeze()


def process_results(frame, results, thresh=0.6):
    # size of the original frame
    h, w = frame.shape[:2]
    # results is a tensor [1, 1, 100, 7]
    results = results.squeeze()
    boxes = []
    labels = []
    scores = []
    for _, label, score, xmin, ymin, xmax, ymax in results:
        # create a box with pixels coordinates from the box with normalized coordinates [0,1]
        boxes.append(
            tuple(map(int, (xmin * w, ymin * h, (xmax - xmin) * w, (ymax - ymin) * h)))
        )
        labels.append(int(label))
        scores.append(float(score))

    # apply non-maximum suppression to get rid of many overlapping entities
    # see https://paperswithcode.com/method/non-maximum-suppression
    # this algorithm returns indices of objects to keep
    indices = cv2.dnn.NMSBoxes(
        bboxes=boxes, scores=scores, score_threshold=thresh, nms_threshold=0.6
    )

    # if there are no boxes
    if len(indices) == 0:
        return []

    # filter detected objects
    return [(labels[idx], scores[idx], boxes[idx]) for idx in indices.flatten()]


def draw_boxes(frame, boxes):
    for label, score, box in boxes:
        # choose color for the label
        color = tuple(map(int, colors[label]))
        # draw box
        x2 = box[0] + box[2]
        y2 = box[1] + box[3]
        cv2.rectangle(img=frame, pt1=box[:2], pt2=(x2, y2), color=color, thickness=3)

        # draw label name inside the box
        cv2.putText(
            img=frame,
            text=f"{classes[label]} {score:.2f}",
            org=(box[0] + 10, box[1] + 30),
            fontFace=cv2.FONT_HERSHEY_COMPLEX,
            fontScale=frame.shape[1] / 1000,
            color=color,
            thickness=1,
            lineType=cv2.LINE_AA,
        )

    return frame

# Main Processing Function
# main processing function to run object detection
def run_object_detection(source=0, flip=False, use_popup=False, skip_first_frames=0):
    player = None
    try:
        # create video player to play with target fps
        player = utils.VideoPlayer(
            source=source, flip=flip, fps=30, skip_first_frames=skip_first_frames
        )
        # start capturing
        player.start()
        if use_popup:
            title = "Press ESC to Exit"
            cv2.namedWindow(
                winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE
            )

        processing_times = collections.deque()
        while True:
            # grab the frame
            frame = player.next()
            if frame is None:
                print("Source ended")
                break
            # if frame larger than full HD, reduce size to improve the performance
            scale = 1280 / max(frame.shape)
            if scale < 1:
                frame = cv2.resize(
                    src=frame,
                    dsize=None,
                    fx=scale,
                    fy=scale,
                    interpolation=cv2.INTER_AREA,
                )

            # resize image and change dims to fit neural network input
            input_img = cv2.resize(
                src=frame, dsize=(width, height), interpolation=cv2.INTER_AREA
            )
            # create batch of images (size = 1)
            input_img = input_img[np.newaxis, ...]

            # measure processing time

            start_time = time.time()
            # get results
            results = compiled_model([input_img])[output_layer]
            stop_time = time.time()
            # get poses from network results
            boxes = process_results(frame=frame, results=results)

            # draw boxes on a frame
            frame = draw_boxes(frame=frame, boxes=boxes)

            processing_times.append(stop_time - start_time)
            # use processing times from last 200 frames
            if len(processing_times) > 200:
                processing_times.popleft()

            _, f_width = frame.shape[:2]
            # mean processing time [ms]
            processing_time = np.mean(processing_times) * 1000
            fps = 1000 / processing_time
            cv2.putText(
                img=frame,
                text=f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)",
                org=(20, 40),
                fontFace=cv2.FONT_HERSHEY_COMPLEX,
                fontScale=f_width / 1000,
                color=(0, 0, 255),
                thickness=1,
                lineType=cv2.LINE_AA,
            )

            # use this workaround if there is flickering
            if use_popup:
                cv2.imshow(winname=title, mat=frame)
                key = cv2.waitKey(1)
                # escape = 27
                if key == 27:
                    break
            else:
                # encode numpy array to jpg
                _, encoded_img = cv2.imencode(
                    ext=".jpg", img=frame, params=[cv2.IMWRITE_JPEG_QUALITY, 100]
                )
                # create IPython image
                i = display.Image(data=encoded_img)
                # display the image in this notebook
                display.clear_output(wait=True)
                display.display(i)
    # ctrl-c
    except KeyboardInterrupt:
        print("Interrupted")
    # any different error
    except RuntimeError as e:
        print(e)
    finally:
        if player is not None:
            # stop capturing
            player.stop()
        if use_popup:
            cv2.destroyAllWindows()

# Run Live Object Detection
run_object_detection(source=0, flip=True, use_popup=False)

# Run Object Detection on a Video File
video_file = "../201-vision-monodepth/data/Coco Walking in Berkeley.mp4"

run_object_detection(source=video_file, flip=False, use_popup=False)
# Imports
import os
import sys
import zipfile
from pathlib import Path

import numpy as np
from monai.transforms import LoadImage
from openvino.inference_engine import IECore

sys.path.append("../utils")
from models.custom_segmentation import SegmentationModel
from notebook_utils import benchmark_model, download_file, show_live_inference

# Settings
# The directory that contains the IR model (xml and bin) files
MODEL_PATH = "pretrained_model/quantized_unet_kits19.xml"
# Uncomment the next line to use the FP16 model instead of the quantized model
# MODEL_PATH = "pretrained_model/unet_kits19.xml"

# Benchmark Model Performance
ie = IECore()
# By default, benchmark on MULTI:CPU,GPU if a GPU is available, otherwise on CPU.
device = "MULTI:CPU,GPU" if "GPU" in ie.available_devices else "CPU"
# Uncomment one of the options below to benchmark on other devices
# device = "GPU"
# device = "CPU"
# device = "AUTO"

# Benchmark model
benchmark_model(model_path=MODEL_PATH, device=device, seconds=15)

# Download and Prepare Data
# Directory that contains the CT scan data. This directory should contain subdirectories
# case_00XXX where XXX is between 000 and 299
BASEDIR = Path("kits19_frames_1")
# The CT scan case number. For example: 16 for data from the case_00016 directory
# Currently only 117 is supported
CASE = 117

case_path = BASEDIR / f"case_{CASE:05d}"

if not case_path.exists():
    filename = download_file(
        f"https://storage.openvinotoolkit.org/data/test_data/openvino_notebooks/kits19/case_{CASE:05d}.zip"
    )
    with zipfile.ZipFile(filename, "r") as zip_ref:
        zip_ref.extractall(path=BASEDIR)
    os.remove(filename)  # remove zipfile
    print(f"Downloaded and extracted data for case_{CASE:05d}")
else:
    print(f"Data for case_{CASE:05d} exists")

# Load model
ie = IECore()
segmentation_model = SegmentationModel(
    ie=ie, model_path=Path(MODEL_PATH), sigmoid=True, rotate_and_flip=True
)
image_paths = sorted(case_path.glob("imaging_frames/*jpg"))

print(f"{case_path.name}, {len(image_paths)} images")

# Show Live Inference
# Possible options for device include "CPU", "GPU", "AUTO", "MULTI"
device = "MULTI:CPU,GPU" if "GPU" in ie.available_devices else "CPU"
reader = LoadImage(image_only=True, dtype=np.uint8)

show_live_inference(
    ie=ie, image_paths=image_paths, model=segmentation_model, device=device, reader=reader
)
# Build a Generative Adversarial Network (GAN) - Deep Learning with PyTorch

import torch
import numpy as np
import matplotlib.pyplot as plt

## Configurations

device = 'cuda' # image = image.to(device)

batch_size = 128 # trainloader, training loop

noise_dim = 64 # generator model

# optimizer parameters
lr = 0.0002
beta_1 = 0.5
beta_2 = 0.99

# training variables
epochs = 50

## Load MNIST dataset

Loading the dataset from torch library

from torchvision import datasets, transforms as T

train_augs = T.Compose([
                        T.RandomRotation((-20, +20)),
                        T.ToTensor()
])

# image format -> (height, width, channel)
# tensor format of the image -> (channel, height, width)

trainset = datasets.MNIST('MNIST/', download = True, train=True, transform = train_augs)

trainset

image, label = trainset[50]

plt.imshow(image.squeeze(), cmap='gray')

## Load dataset into batches

from torch.utils.data import DataLoader
from torchvision.utils import make_grid

trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True)

len(trainloader) # one batch size -> 60000/128

### Python iter()

The Python iter() function returns an iterator for the given object.

The iter() function creates an object which can be iterated one element at a time.

These objects are useful when coupled with loops like for loop, while loop.

The syntax of the iter() function is:

iter(object, sentinel)

dataiter = iter(trainloader)

images, _ = dataiter.next()

print(images.shape)

### Function to plot some images from a batch

def show_tensor_images(tensor_img, num_images=16, nrow=4, size=(1,28,28)):
  unflat_img = tensor_img.detach().cpu()
  img_grid = make_grid(unflat_img[:num_images], nrow=nrow)
  plt.imshow(img_grid.permute(1,2,0).squeeze())
  plt.show()

show_tensor_images(images, num_images=32, nrow=8)

# if we don't pass parameters, run with default values

## Create Discriminator Network

from torch import nn
from torchsummary import summary

from torch.nn.modules.activation import LeakyReLU
from torch.nn.modules.batchnorm import BatchNorm2d

def get_discriminator_block(in_channels,  out_channels, kernel_size, stride):
  return nn.Sequential(
      nn.Conv2d(in_channels, out_channels, kernel_size, stride),
      nn.BatchNorm2d(out_channels),
      nn.LeakyReLU(0.2)
  )


We're not using a sigmoid layer, because we'll use a binarycrossentropy with logic loss which takes raw outputs


class Discriminator(nn.Module): # inheriting from nn.Module class

  def __init__(self):

    # call super() in inheritance to access the parent class.
    # if not call super(), it will overide the __init__() by child class
    super(Discriminator, self).__init__() 

    self.block_1 = get_discriminator_block(1,16,(3,3),2)
    self.block_2 = get_discriminator_block(16,32,(5,5),2)
    self.block_3 = get_discriminator_block(32,64,(5,5),2)

    self.flatten = nn.Flatten()
    self.linear = nn.Linear(in_features=64, out_features=1)
    
  def forward(self, images):
    
    x1 = self.block_1(images)
    x2 = self.block_2(x1)
    x3 = self.block_3(x2)

    x4 = self.flatten(x3)
    x5 = self.linear(x4)

    return x5

D = Discriminator()
D.to(device)

summary(D, input_size=(1,28,28))

## Create Generator Network

def get_generator_block(in_channels, out_channels, kernel_size, stride, final_block=False):

  if final_block == True:
    return nn.Sequential(
        nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride),
        nn.Tanh()
    )
    
  return nn.Sequential(
      nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride),
      nn.BatchNorm2d(out_channels),
      nn.ReLU()
  )

class Generator(nn.Module):

  def __init__(self, noise_dim):
    super(Generator, self).__init__()

    self.noise_dim = noise_dim
    self.block_1 = get_generator_block(noise_dim, 256, (3,3), 2)
    self.block_2 = get_generator_block(256, 128, (4,4), 1)
    self.block_3 = get_generator_block(128, 64, (3,3), 2)
    
    self.block_4 = get_generator_block(64, 1, (4,4), 2, final_block=True)

  def forward(self, random_noise_vector):

    x = random_noise_vector.view(-1, self.noise_dim, 1, 1)

    x1 = self.block_1(x)
    x2 = self.block_2(x1)
    x3 = self.block_3(x2)
    x4 = self.block_4(x3)

    return x4


G = Generator(noise_dim)
G.to(device)

summary(G, input_size=(1, noise_dim))

### Replace random initialized weights to normal weights for the robust training


def weights_init(m):

  if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
    nn.init.normal_(m.weight, 0.0, 0.02)

  if isinstance(m, nn.BatchNorm2d):
    nn.init.normal_(m.weight, 0.0, 0.02)
    nn.init.constant_(m.bias, 0)

D = D.apply(weights_init)
G = G.apply(weights_init)

## Create Loss function and Optimizer

def real_loss(discriminator_prediction):
  criterion = nn.BCEWithLogitsLoss()
  ground_truth = torch.ones_like(discriminator_prediction)
  loss = criterion(discriminator_prediction, ground_truth)

  return loss

def fake_loss(discriminator_prediction):
  criterion = nn.BCEWithLogitsLoss()
  ground_truth = torch.zeros_like(discriminator_prediction)
  loss = criterion(discriminator_prediction, ground_truth)

  return loss

D_opt = torch.optim.Adam(D.parameters(), lr=lr, betas=(beta_1, beta_2))
G_opt = torch.optim.Adam(G.parameters(), lr=lr, betas=(beta_1, beta_2))

## Training Loop

from tqdm import tqdm

for i in range(epochs):

  total_d_loss = 0.0
  total_g_loss = 0.0

  for real_image, _ in tqdm(trainloader):

    real_image = real_image.to(device)
    noise = torch.randn(batch_size, noise_dim, device=device)

    # find loss and update weights for Discriminator

    D_opt.zero_grad()

    fake_image = G(noise)
    D_pred = D(fake_image)
    D_fake_loss = fake_loss(D_pred)

    D_pred = D(real_image)
    D_real_loss = real_loss(D_pred)

    D_loss = (D_fake_loss + D_real_loss) / 2

    total_d_loss += D_loss.item()

    D_loss.backward()
    D_opt.step()

    # find loss and update weights for Generator

    G_opt.zero_grad()
    noise = torch.randn(batch_size, noise_dim, device=device)

    fake_image = G(noise)
    D_pred = D(fake_image)
    G_loss = real_loss(D_pred)

    total_g_loss += G_loss.item()

    G_loss.backward()
    G_opt.step()


  avg_d_loss = total_d_loss / len(trainloader)
  avg_g_loss = total_g_loss / len(trainloader)

  print(f'Epoch: {i+1} | D_loss: {avg_d_loss} | G_loss: {avg_g_loss}')

  show_tensor_images(fake_image)



import transformers 
from transformers import BertModel, BertTokenizer
import torch

import copy
import pandas as pd
import numpy as np
import seaborn as sns
from pylab import rcParams
import matplotlib.pyplot as plt
from matplotlib import rc
from tqdm import tqdm

from sklearn.model_selection import train_test_split
from sklearn.metrics import confusion_matrix, classification_report

from collections import defaultdict
from textwrap import wrap

from torch import nn, optim
from torch.utils import data

%matplotlib inline
%config InlineBackend.figure_format='retina'

sns.set(style='whitegrid', palette='muted', font_scale=1.2)

HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"]

sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE))

rcParams['figure.figsize'] = 6, 4

RANDOM_SEED = 42
np.random.seed(RANDOM_SEED)
torch.manual_seed(RANDOM_SEED)

star

Sat Jun 18 2022 21:07:22 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/204-named-entity-recognition/204-named-entity-recognition.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #nlp #entity-recognition #bert
star

Sat Jun 18 2022 21:03:36 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/301-tensorflow-training-openvino/301-tensorflow-training-openvino.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #optimization #tensorflow
star

Sat Jun 18 2022 20:58:59 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/301-tensorflow-training-openvino/301-tensorflow-training-openvino-pot.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #optimization #tensorflow
star

Sat Jun 18 2022 20:53:15 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/302-pytorch-quantization-aware-training/302-pytorch-quantization-aware-training.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #quantization #nncf #optimization #pytorch
star

Sat Jun 18 2022 20:47:05 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/305-tensorflow-quantization-aware-training/305-tensorflow-quantization-aware-training.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #tensorflow #quantization #nncf #optimization
star

Sat Jun 18 2022 20:42:14 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/405-paddle-ocr-webcam/405-paddle-ocr-webcam.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #ocr #paddle-paddle #paddle-ocr #nlp
star

Fri Jun 17 2022 09:49:43 GMT+0000 (Coordinated Universal Time) https://github.com/microsoft/onnxruntime-inference-examples/blob/main/python/OpenVINO_EP/tiny_yolo_v2_object_detection/tiny_yolov2_obj_detection_sample.py

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #object-detection #onnx #onnx-runtime #openvino-onnx-runtime #yolov2 #openvino-execution-provider-for-onnx
star

Fri Jun 17 2022 05:10:39 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/209-handwritten-ocr/209-handwritten-ocr.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #ocr #chinese #japanese #handwritten
star

Fri Jun 17 2022 05:06:53 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/208-optical-character-recognition/208-optical-character-recognition.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #ocr
star

Fri Jun 17 2022 05:03:05 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/213-question-answering/213-question-answering.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #question-answering #bert
star

Fri Jun 17 2022 04:58:24 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/211-speech-to-text/211-speech-to-text.ipynb

#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp ##speechtotext
star

Fri Jun 17 2022 04:49:49 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/403-action-recognition-webcam/403-action-recognition-webcam.ipynb

#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #action-recognition
star

Fri Jun 17 2022 04:28:34 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb

#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #object-detection #pose-estimation
star

Thu Jun 16 2022 14:49:51 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/401-object-detection-webcam/401-object-detection.ipynb

#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #object-detection
star

Thu Jun 16 2022 14:44:32 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/210-ct-scan-live-inference/210-ct-scan-live-inference.ipynb

#python #openvino #openvino-notebooks #live-inference #ct-scan #deeplearning #accelerated-inference
star

Tue Apr 26 2022 02:12:16 GMT+0000 (Coordinated Universal Time) https://www.coursera.org/learn/deep-learning-with-pytorch-generative-adversarial-network/home/welcome

#colab #deeplearning #gan #mnist

Save snippets that work with our extensions

Available in the Chrome Web Store Get Firefox Add-on Get VS Code extension