#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #nlp #entity-recognition #bert
204-named-entity-recognition: Named Entity Recognition with OpenVINO# Imports import time import json import numpy as np import tokens_bert as tokens from openvino.runtime import Core from openvino.runtime import Dimension # Download the model # directory where model will be downloaded base_model_dir = "model" # desired precision precision = "FP16-INT8" # model name as named in Open Model Zoo model_name = "bert-small-uncased-whole-word-masking-squad-int8-0002" model_path = f"model/intel/{model_name}/{precision}/{model_name}.xml" model_weights_path = f"model/intel/{model_name}/{precision}/{model_name}.bin" download_command = f"omz_downloader " \ f"--name {model_name} " \ f"--precision {precision} " \ f"--output_dir {base_model_dir} " \ f"--cache_dir {base_model_dir}" ! $download_command # Load the model for Entity Extraction with Dynamic Shape # initialize inference engine ie_core = Core() # read the network and corresponding weights from file model = ie_core.read_model(model=model_path, weights=model_weights_path) # assign dynamic shapes to every input layer on the last dimension for input_layer in model.inputs: input_shape = input_layer.partial_shape input_shape[1] = Dimension(1, 384) model.reshape({input_layer: input_shape}) # compile the model for the CPU compiled_model = ie_core.compile_model(model=model, device_name="CPU") # get input names of nodes input_keys = list(compiled_model.inputs) # Processing # path to vocabulary file vocab_file_path = "data/vocab.txt" # create dictionary with words and their indices vocab = tokens.load_vocab_file(vocab_file_path) # define special tokens cls_token = vocab["[CLS]"] sep_token = vocab["[SEP]"] # set a confidence score threshold confidence_threshold = 0.4 # Preprocessing # generator of a sequence of inputs def prepare_input(entity_tokens, context_tokens): input_ids = [cls_token] + entity_tokens + [sep_token] + \ context_tokens + [sep_token] # 1 for any index attention_mask = [1] * len(input_ids) # 0 for entity tokens, 1 for context part token_type_ids = [0] * (len(entity_tokens) + 2) + \ [1] * (len(context_tokens) + 1) # create input to feed the model input_dict = { "input_ids": np.array([input_ids], dtype=np.int32), "attention_mask": np.array([attention_mask], dtype=np.int32), "token_type_ids": np.array([token_type_ids], dtype=np.int32), } # some models require additional position_ids if "position_ids" in [i_key.any_name for i_key in input_keys]: position_ids = np.arange(len(input_ids)) input_dict["position_ids"] = np.array([position_ids], dtype=np.int32) return input_dict # Postprocessing def postprocess(output_start, output_end, entity_tokens, context_tokens_start_end, input_size): def get_score(logits): out = np.exp(logits) return out / out.sum(axis=-1) # get start-end scores for context score_start = get_score(output_start) score_end = get_score(output_end) # index of first context token in tensor context_start_idx = len(entity_tokens) + 2 # index of last+1 context token in tensor context_end_idx = input_size - 1 # find product of all start-end combinations to find the best one max_score, max_start, max_end = find_best_entity_window( start_score=score_start, end_score=score_end, context_start_idx=context_start_idx, context_end_idx=context_end_idx ) # convert to context text start-end index max_start = context_tokens_start_end[max_start][0] max_end = context_tokens_start_end[max_end][1] return max_score, max_start, max_end def find_best_entity_window(start_score, end_score, context_start_idx, context_end_idx): context_len = context_end_idx - context_start_idx score_mat = np.matmul( start_score[context_start_idx:context_end_idx].reshape( (context_len, 1)), end_score[context_start_idx:context_end_idx].reshape( (1, context_len)), ) # reset candidates with end before start score_mat = np.triu(score_mat) # reset long candidates (>16 words) score_mat = np.tril(score_mat, 16) # find the best start-end pair max_s, max_e = divmod(score_mat.flatten().argmax(), score_mat.shape[1]) max_score = score_mat[max_s, max_e] return max_score, max_s, max_e def get_best_entity(entity, context, vocab): # convert context string to tokens context_tokens, context_tokens_end = tokens.text_to_tokens( text=context.lower(), vocab=vocab) # convert entity string to tokens entity_tokens, _ = tokens.text_to_tokens(text=entity.lower(), vocab=vocab) network_input = prepare_input(entity_tokens, context_tokens) input_size = len(context_tokens) + len(entity_tokens) + 3 # openvino inference output_start_key = compiled_model.output("output_s") output_end_key = compiled_model.output("output_e") result = compiled_model(network_input) # postprocess the result getting the score and context range for the answer score_start_end = postprocess(output_start=result[output_start_key][0], output_end=result[output_end_key][0], entity_tokens=entity_tokens, context_tokens_start_end=context_tokens_end, input_size=input_size) # return the part of the context, which is already an answer return context[score_start_end[1]:score_start_end[2]], score_start_end[0] # Set the Entity Recognition Template template = ["building", "company", "persons", "city", "state", "height", "floor", "address"] def run_analyze_entities(context): print(f"Context: {context}\n", flush=True) if len(context) == 0: print("Error: Empty context or outside paragraphs") return if len(context) > 380: print("Error: The context is too long for this particular model. " "Try with context shorter than 380 words.") return # measure processing time start_time = time.perf_counter() extract = [] for field in template: entity_to_find = field + "?" entity, score = get_best_entity(entity=entity_to_find, context=context, vocab=vocab) if score >= confidence_threshold: extract.append({"Entity": entity, "Type": field, "Score": f"{score:.2f}"}) end_time = time.perf_counter() res = {"Extraction": extract, "Time": f"{end_time - start_time:.2f}s"} print("\nJSON Output:") print(json.dumps(res, sort_keys=False, indent=4)) # Run on Simple Text # Sample 1 source_text = "Intel Corporation is an American multinational and technology" \ " company headquartered in Santa Clara, California." run_analyze_entities(source_text) # Sample 2 source_text = "Intel was founded in Mountain View, California, " \ "in 1968 by Gordon E. Moore, a chemist, and Robert Noyce, " \ "a physicist and co-inventor of the integrated circuit." run_analyze_entities(source_text) # Sample 3 source_text = "The Robert Noyce Building in Santa Clara, California, " \ "is the headquarters for Intel Corporation. It was constructed in 1992 " \ "and is located at 2200 Mission College Boulevard - 95054. It has an " \ "estimated height of 22.20 meters and 6 floors above ground." run_analyze_entities(source_text)
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #optimization #tensorflow
301-tensorflow-training-openvino: From Training to Deployment with TensorFlow and OpenVINO# Import TensorFlow and Other Libraries import os import sys from pathlib import Path import PIL import matplotlib.pyplot as plt import numpy as np import tensorflow as tf from PIL import Image from openvino.runtime import Core from openvino.tools.mo import mo_tf from tensorflow import keras from tensorflow.keras import layers from tensorflow.keras.models import Sequential sys.path.append("../utils") from notebook_utils import download_file # Download and Explore the Dataset import pathlib dataset_url = "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" data_dir = tf.keras.utils.get_file('flower_photos', origin=dataset_url, untar=True) data_dir = pathlib.Path(data_dir) image_count = len(list(data_dir.glob('*/*.jpg'))) print(image_count) roses = list(data_dir.glob('roses/*')) PIL.Image.open(str(roses[0])) PIL.Image.open(str(roses[1])) tulips = list(data_dir.glob('tulips/*')) PIL.Image.open(str(tulips[0])) PIL.Image.open(str(tulips[1])) # Create a Dataset batch_size = 32 img_height = 180 img_width = 180 train_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="training", seed=123, image_size=(img_height, img_width), batch_size=batch_size) val_ds = tf.keras.preprocessing.image_dataset_from_directory( data_dir, validation_split=0.2, subset="validation", seed=123, image_size=(img_height, img_width), batch_size=batch_size) class_names = train_ds.class_names print(class_names) # Visualize the Data plt.figure(figsize=(10, 10)) for images, labels in train_ds.take(1): for i in range(9): ax = plt.subplot(3, 3, i + 1) plt.imshow(images[i].numpy().astype("uint8")) plt.title(class_names[labels[i]]) plt.axis("off") for image_batch, labels_batch in train_ds: print(image_batch.shape) print(labels_batch.shape) break # Configure the Dataset for Performance # AUTOTUNE = tf.data.AUTOTUNE AUTOTUNE = tf.data.experimental.AUTOTUNE train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE) val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE) # Standardize the Data normalization_layer = layers.experimental.preprocessing.Rescaling(1./255) normalized_ds = train_ds.map(lambda x, y: (normalization_layer(x), y)) image_batch, labels_batch = next(iter(normalized_ds)) first_image = image_batch[0] # Notice the pixels values are now in `[0,1]`. print(np.min(first_image), np.max(first_image)) # Create the Model num_classes = 5 model = Sequential([ layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)), layers.Conv2D(16, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(32, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Conv2D(64, 3, padding='same', activation='relu'), layers.MaxPooling2D(), layers.Flatten(), layers.Dense(128, activation='relu'), layers.Dense(num_classes) ]) # Compile the Model model.compile(optimizer='adam', loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True), metrics=['accuracy'])
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #optimization #tensorflow
301-tensorflow-training-openvino: Post-Training Quantization with TensorFlow Classification Model# Preparation from pathlib import Path import tensorflow as tf model_xml = Path("model/flower/flower_ir.xml") dataset_url = ( "https://storage.googleapis.com/download.tensorflow.org/example_images/flower_photos.tgz" ) data_dir = Path(tf.keras.utils.get_file("flower_photos", origin=dataset_url, untar=True)) if not model_xml.exists(): print("Executing training notebook. This will take a while...") %run 301-tensorflow-training-openvino.ipynb # Imports import copy import os import sys import cv2 import matplotlib.pyplot as plt import numpy as np from addict import Dict from openvino.tools.pot.api import Metric, DataLoader from openvino.tools.pot.graph import load_model, save_model from openvino.tools.pot.graph.model_utils import compress_model_weights from openvino.tools.pot.engines.ie_engine import IEEngine from openvino.tools.pot.pipeline.initializer import create_pipeline from openvino.runtime import Core from PIL import Image sys.path.append("../utils") from notebook_utils import benchmark_model, download_file # Settings model_config = Dict( { "model_name": "flower", "model": "model/flower/flower_ir.xml", "weights": "model/flower/flower_ir.bin", } ) engine_config = Dict({"device": "CPU", "stat_requests_number": 2, "eval_requests_number": 2}) algorithms = [ { "name": "DefaultQuantization", "params": { "target_device": "CPU", "preset": "performance", "stat_subset_size": 1000, }, } ] # Create DataLoader Class class ClassificationDataLoader(DataLoader): """ DataLoader for image data that is stored in a directory per category. For example, for categories _rose_ and _daisy_, rose images are expected in data_source/rose, daisy images in data_source/daisy. """ def __init__(self, data_source): """ :param data_source: path to data directory """ self.data_source = Path(data_source) self.dataset = [p for p in data_dir.glob("**/*") if p.suffix in (".png", ".jpg")] self.class_names = sorted([item.name for item in Path(data_dir).iterdir() if item.is_dir()]) def __len__(self): """ Returns the number of elements in the dataset """ return len(self.dataset) def __getitem__(self, index): """ Get item from self.dataset at the specified index. Returns (annotation, image), where annotation is a tuple (index, class_index) and image a preprocessed image in network shape """ if index >= len(self): raise IndexError filepath = self.dataset[index] annotation = (index, self.class_names.index(filepath.parent.name)) image = self._read_image(filepath) return annotation, image def _read_image(self, index): """ Read image at dataset[index] to memory, resize, convert to BGR and to network shape :param index: dataset index to read :return ndarray representation of image batch """ image = cv2.imread(os.path.join(self.data_source, index))[:, :, (2, 1, 0)] image = cv2.resize(image, (180, 180)).astype(np.float32) return image # Create Accuracy Metric Class class Accuracy(Metric): def __init__(self): super().__init__() self._name = "accuracy" self._matches = [] @property def value(self): """Returns accuracy metric value for the last model output.""" return {self._name: self._matches[-1]} @property def avg_value(self): """ Returns accuracy metric value for all model outputs. Results per image are stored in self._matches, where True means a correct prediction and False a wrong prediction. Accuracy is computed as the number of correct predictions divided by the total number of predictions. """ num_correct = np.count_nonzero(self._matches) return {self._name: num_correct / len(self._matches)} def update(self, output, target): """Updates prediction matches. :param output: model output :param target: annotations """ predict = np.argmax(output[0], axis=1) match = predict == target self._matches.append(match) def reset(self): """ Resets the Accuracy metric. This is a required method that should initialize all attributes to their initial value. """ self._matches = [] def get_attributes(self): """ Returns a dictionary of metric attributes {metric_name: {attribute_name: value}}. Required attributes: 'direction': 'higher-better' or 'higher-worse' 'type': metric type """ return {self._name: {"direction": "higher-better", "type": "accuracy"}} # POT Optimization # Step 1: Load the model model = load_model(model_config=model_config) original_model = copy.deepcopy(model) # Step 2: Initialize the data loader data_loader = ClassificationDataLoader(data_source=data_dir) # Step 3 (Optional. Required for AccuracyAwareQuantization): Initialize the metric # Compute metric results on original model metric = Accuracy() # Step 4: Initialize the engine for metric calculation and statistics collection engine = IEEngine(config=engine_config, data_loader=data_loader, metric=metric) # Step 5: Create a pipeline of compression algorithms pipeline = create_pipeline(algo_config=algorithms, engine=engine) # Step 6: Execute the pipeline compressed_model = pipeline.run(model=model) # Step 7 (Optional): Compress model weights quantized precision # in order to reduce the size of final .bin file compress_model_weights(model=compressed_model) # Step 8: Save the compressed model and get the path to the model compressed_model_paths = save_model( model=compressed_model, save_path=os.path.join(os.path.curdir, "model/optimized") ) compressed_model_xml = Path(compressed_model_paths[0]["model"]) print(f"The quantized model is stored in {compressed_model_xml}") # Step 9 (Optional): Evaluate the original and compressed model. Print the results original_metric_results = pipeline.evaluate(original_model) if original_metric_results: print(f"Accuracy of the original model: {next(iter(original_metric_results.values())):.5f}") quantized_metric_results = pipeline.evaluate(compressed_model) if quantized_metric_results: print(f"Accuracy of the quantized model: {next(iter(quantized_metric_results.values())):.5f}") # Run Inference on Quantized Model def pre_process_image(imagePath, img_height=180): # Model input format n, c, h, w = [1, 3, img_height, img_height] image = Image.open(imagePath) image = image.resize((h, w), resample=Image.BILINEAR) # Convert to array and change data layout from HWC to CHW image = np.array(image) input_image = image.reshape((n, h, w, c)) return input_image # Load the optimized model and get the names of the input and output layer ie = Core() model_pot = ie.read_model(model="model/optimized/flower_ir.xml") compiled_model_pot = ie.compile_model(model=model_pot, device_name="CPU") input_layer = compiled_model_pot.input(0) output_layer = compiled_model_pot.output(0) # Get the class names: a list of directory names in alphabetical order class_names = sorted([item.name for item in Path(data_dir).iterdir() if item.is_dir()]) # Run inference on an input image... inp_img_url = ( "https://upload.wikimedia.org/wikipedia/commons/4/48/A_Close_Up_Photo_of_a_Dandelion.jpg" ) directory = "output" inp_file_name = "A_Close_Up_Photo_of_a_Dandelion.jpg" file_path = Path(directory)/Path(inp_file_name) # Download the image if it does not exist yet if not Path(inp_file_name).exists(): download_file(inp_img_url, inp_file_name, directory=directory) # Pre-process the image and get it ready for inference. input_image = pre_process_image(imagePath=file_path) print(f'input image shape: {input_image.shape}') print(f'input layer shape: {input_layer.shape}') res = compiled_model_pot([input_image])[output_layer] score = tf.nn.softmax(res[0]) # Show the results image = Image.open(file_path) plt.imshow(image) print( "This image most likely belongs to {} with a {:.2f} percent confidence.".format( class_names[np.argmax(score)], 100 * np.max(score) ) ) # Compare Inference Speed # print the available devices on this system ie = Core() print("Device information:") print(ie.get_property("CPU", "FULL_DEVICE_NAME")) if "GPU" in ie.available_devices: print(ie.get_property("GPU", "FULL_DEVICE_NAME")) # Original model - CPU benchmark_model(model_path=model_xml, device="CPU", seconds=15, api='async') # Quantized model - CPU benchmark_model(model_path=compressed_model_xml, device="CPU", seconds=15, api='async') # Original model - MULTI:CPU,GPU if "GPU" in ie.available_devices: benchmark_model(model_path=model_xml, device="MULTI:CPU,GPU", seconds=15, api='async') else: print("A supported integrated GPU is not available on this system.") # Quantized model - MULTI:CPU,GPU if "GPU" in ie.available_devices: benchmark_model(model_path=compressed_model_xml, device="MULTI:CPU,GPU", seconds=15, api='async') else: print("A supported integrated GPU is not available on this system.") # print the available devices on this system print("Device information:") print(ie.get_property("CPU", "FULL_DEVICE_NAME")) if "GPU" in ie.available_devices: print(ie.get_property("GPU", "FULL_DEVICE_NAME")) # Original IR model - CPU benchmark_output = %sx benchmark_app -m $model_xml -t 15 -api async # Remove logging info from benchmark_app output and show only the results benchmark_result = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith(" ") or line=="")] print("\n".join(benchmark_result)) # Quantized IR model - CPU benchmark_output = %sx benchmark_app -m $compressed_model_xml -t 15 -api async # Remove logging info from benchmark_app output and show only the results benchmark_result = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith(" ") or line=="")] print("\n".join(benchmark_result)) # Original IR model - MULTI:CPU,GPU ie = Core() if "GPU" in ie.available_devices: benchmark_output = %sx benchmark_app -m $model_xml -d MULTI:CPU,GPU -t 15 -api async # Remove logging info from benchmark_app output and show only the results benchmark_result = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith(" ") or line=="")] print("\n".join(benchmark_result)) else: print("An integrated GPU is not available on this system.") # Quantized IR model - MULTI:CPU,GPU ie = Core() if "GPU" in ie.available_devices: benchmark_output = %sx benchmark_app -m $compressed_model_xml -d MULTI:CPU,GPU -t 15 -api async # Remove logging info from benchmark_app output and show only the results benchmark_result = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith(" ") or line=="")] print("\n".join(benchmark_result)) else: print("An integrated GPU is not available on this system.")
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #quantization #nncf #optimization #pytorch
302-pytorch-quantization-aware-training: Optimizing PyTorch models with Neural Network Compression Framework of OpenVINO by 8-bit quantization# Imports and Settings # On Windows, add the directory that contains cl.exe to the PATH to enable PyTorch to find the # required C++ tools. This code assumes that Visual Studio 2019 is installed in the default # directory. If you have a different C++ compiler, please add the correct path to os.environ["PATH"] # directly. Note that the C++ Redistributable is not enough to run this notebook. # Adding the path to os.environ["LIB"] is not always required - it depends on the system's configuration import sys if sys.platform == "win32": import distutils.command.build_ext import os from pathlib import Path VS_INSTALL_DIR = r"C:/Program Files (x86)/Microsoft Visual Studio" cl_paths = sorted(list(Path(VS_INSTALL_DIR).glob("**/Hostx86/x64/cl.exe"))) if len(cl_paths) == 0: raise ValueError( "Cannot find Visual Studio. This notebook requires a C++ compiler. If you installed " "a C++ compiler, please add the directory that contains cl.exe to `os.environ['PATH']`." ) else: # If multiple versions of MSVC are installed, get the most recent version cl_path = cl_paths[-1] vs_dir = str(cl_path.parent) os.environ["PATH"] += f"{os.pathsep}{vs_dir}" # Code for finding the library dirs from # https://stackoverflow.com/questions/47423246/get-pythons-lib-path d = distutils.core.Distribution() b = distutils.command.build_ext.build_ext(d) b.finalize_options() os.environ["LIB"] = os.pathsep.join(b.library_dirs) print(f"Added {vs_dir} to PATH") import sys import time import warnings # to disable warnings on export to ONNX import zipfile from pathlib import Path import logging import torch import nncf # Important - should be imported directly after torch import torch.nn as nn import torch.nn.parallel import torch.optim import torch.utils.data import torch.utils.data.distributed import torchvision.datasets as datasets import torchvision.models as models import torchvision.transforms as transforms from nncf.common.utils.logger import set_log_level set_log_level(logging.ERROR) # Disables all NNCF info and warning messages from nncf import NNCFConfig from nncf.torch import create_compressed_model, register_default_init_args from openvino.runtime import Core from torch.jit import TracerWarning sys.path.append("../utils") from notebook_utils import download_file torch.manual_seed(0) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") print(f"Using {device} device") MODEL_DIR = Path("model") OUTPUT_DIR = Path("output") DATA_DIR = Path("data") BASE_MODEL_NAME = "resnet18" image_size = 64 OUTPUT_DIR.mkdir(exist_ok=True) MODEL_DIR.mkdir(exist_ok=True) DATA_DIR.mkdir(exist_ok=True) # Paths where PyTorch, ONNX and OpenVINO IR models will be stored fp32_pth_path = Path(MODEL_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".pth") fp32_onnx_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".onnx") fp32_ir_path = fp32_onnx_path.with_suffix(".xml") int8_onnx_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_int8")).with_suffix(".onnx") int8_ir_path = int8_onnx_path.with_suffix(".xml") # It's possible to train FP32 model from scratch, but it might be slow. So the pre-trained weights are downloaded by default. pretrained_on_tiny_imagenet = True fp32_pth_url = "https://storage.openvinotoolkit.org/repositories/nncf/openvino_notebook_ckpts/302_resnet18_fp32_v1.pth" download_file(fp32_pth_url, directory=MODEL_DIR, filename=fp32_pth_path.name) # Download Tiny ImageNet dataset def download_tiny_imagenet_200( data_dir: Path, url="http://cs231n.stanford.edu/tiny-imagenet-200.zip", tarname="tiny-imagenet-200.zip", ): archive_path = data_dir / tarname download_file(url, directory=data_dir, filename=tarname) zip_ref = zipfile.ZipFile(archive_path, "r") zip_ref.extractall(path=data_dir) zip_ref.close() def prepare_tiny_imagenet_200(dataset_dir: Path): # format validation set the same way as train set is formatted val_data_dir = dataset_dir / 'val' val_annotations_file = val_data_dir / 'val_annotations.txt' with open(val_annotations_file, 'r') as f: val_annotation_data = map(lambda line: line.split('\t')[:2], f.readlines()) val_images_dir = val_data_dir / 'images' for image_filename, image_label in val_annotation_data: from_image_filepath = val_images_dir / image_filename to_image_dir = val_data_dir / image_label if not to_image_dir.exists(): to_image_dir.mkdir() to_image_filepath = to_image_dir / image_filename from_image_filepath.rename(to_image_filepath) val_annotations_file.unlink() val_images_dir.rmdir() DATASET_DIR = DATA_DIR / "tiny-imagenet-200" if not DATASET_DIR.exists(): download_tiny_imagenet_200(DATA_DIR) prepare_tiny_imagenet_200(DATASET_DIR) print(f"Successfully downloaded and prepared dataset at: {DATASET_DIR}") # Pre-train Floating-Point Model # Train Function def train(train_loader, model, criterion, optimizer, epoch): batch_time = AverageMeter("Time", ":3.3f") losses = AverageMeter("Loss", ":2.3f") top1 = AverageMeter("Acc@1", ":2.2f") top5 = AverageMeter("Acc@5", ":2.2f") progress = ProgressMeter( len(train_loader), [batch_time, losses, top1, top5], prefix="Epoch:[{}]".format(epoch) ) # switch to train mode model.train() end = time.time() for i, (images, target) in enumerate(train_loader): images = images.to(device) target = target.to(device) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # compute gradient and do opt step optimizer.zero_grad() loss.backward() optimizer.step() # measure elapsed time batch_time.update(time.time() - end) end = time.time() print_frequency = 50 if i % print_frequency == 0: progress.display(i) # Validate Function def validate(val_loader, model, criterion): batch_time = AverageMeter("Time", ":3.3f") losses = AverageMeter("Loss", ":2.3f") top1 = AverageMeter("Acc@1", ":2.2f") top5 = AverageMeter("Acc@5", ":2.2f") progress = ProgressMeter(len(val_loader), [batch_time, losses, top1, top5], prefix="Test: ") # switch to evaluate mode model.eval() with torch.no_grad(): end = time.time() for i, (images, target) in enumerate(val_loader): images = images.to(device) target = target.to(device) # compute output output = model(images) loss = criterion(output, target) # measure accuracy and record loss acc1, acc5 = accuracy(output, target, topk=(1, 5)) losses.update(loss.item(), images.size(0)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) # measure elapsed time batch_time.update(time.time() - end) end = time.time() print_frequency = 10 if i % print_frequency == 0: progress.display(i) print(" * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}".format(top1=top1, top5=top5)) return top1.avg # Helpers class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self, name, fmt=":f"): self.name = name self.fmt = fmt self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count def __str__(self): fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})" return fmtstr.format(**self.__dict__) class ProgressMeter(object): def __init__(self, num_batches, meters, prefix=""): self.batch_fmtstr = self._get_batch_fmtstr(num_batches) self.meters = meters self.prefix = prefix def display(self, batch): entries = [self.prefix + self.batch_fmtstr.format(batch)] entries += [str(meter) for meter in self.meters] print("\t".join(entries)) def _get_batch_fmtstr(self, num_batches): num_digits = len(str(num_batches // 1)) fmt = "{:" + str(num_digits) + "d}" return "[" + fmt + "/" + fmt.format(num_batches) + "]" def accuracy(output, target, topk=(1,)): """Computes the accuracy over the k top predictions for the specified values of k""" with torch.no_grad(): maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True) res.append(correct_k.mul_(100.0 / batch_size)) return res # Get a Pre-trained FP32 Model num_classes = 200 # 200 is for Tiny ImageNet, default is 1000 for ImageNet init_lr = 1e-4 batch_size = 128 epochs = 4 model = models.resnet18(pretrained=not pretrained_on_tiny_imagenet) # update the last FC layer for Tiny ImageNet number of classes model.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True) model.to(device) # Data loading code train_dir = DATASET_DIR / "train" val_dir = DATASET_DIR / "val" normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_dataset = datasets.ImageFolder( train_dir, transforms.Compose( [ transforms.Resize(image_size), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ] ), ) val_dataset = datasets.ImageFolder( val_dir, transforms.Compose( [ transforms.Resize(image_size), transforms.ToTensor(), normalize, ] ), ) train_loader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, sampler=None ) val_loader = torch.utils.data.DataLoader( val_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True ) # define loss function (criterion) and optimizer criterion = nn.CrossEntropyLoss().to(device) optimizer = torch.optim.Adam(model.parameters(), lr=init_lr) if pretrained_on_tiny_imagenet: # # ** WARNING: torch.load functionality uses Python's pickling module that # may be used to perform arbitrary code execution during unpickling. Only load data that you # trust. # checkpoint = torch.load(str(fp32_pth_path), map_location="cpu") model.load_state_dict(checkpoint["state_dict"], strict=True) acc1_fp32 = checkpoint["acc1"] else: best_acc1 = 0 # Training loop for epoch in range(0, epochs): # run a single training epoch train(train_loader, model, criterion, optimizer, epoch) # evaluate on validation set acc1 = validate(val_loader, model, criterion) is_best = acc1 > best_acc1 best_acc1 = max(acc1, best_acc1) if is_best: checkpoint = {"state_dict": model.state_dict(), "acc1": acc1} torch.save(checkpoint, fp32_pth_path) acc1_fp32 = best_acc1 print(f"Accuracy of FP32 model: {acc1_fp32:.3f}") dummy_input = torch.randn(1, 3, image_size, image_size).to(device) torch.onnx.export(model, dummy_input, fp32_onnx_path) print(f"FP32 ONNX model was exported to {fp32_onnx_path}.") # Create and Initialize Quantization nncf_config_dict = { "input_info": {"sample_size": [1, 3, image_size, image_size]}, "log_dir": str(OUTPUT_DIR), # log directory for NNCF-specific logging outputs "compression": { "algorithm": "quantization", # specify the algorithm here }, } nncf_config = NNCFConfig.from_dict(nncf_config_dict) nncf_config = register_default_init_args(nncf_config, train_loader) compression_ctrl, model = create_compressed_model(model, nncf_config) acc1 = validate(val_loader, model, criterion) print(f"Accuracy of initialized INT8 model: {acc1:.3f}") # Fine-tune the Compressed Model compression_lr = init_lr / 10 optimizer = torch.optim.Adam(model.parameters(), lr=compression_lr) # train for one epoch with NNCF train(train_loader, model, criterion, optimizer, epoch=0) # evaluate on validation set after Quantization-Aware Training (QAT case) acc1_int8 = validate(val_loader, model, criterion) print(f"Accuracy of tuned INT8 model: {acc1_int8:.3f}") print(f"Accuracy drop of tuned INT8 model over pre-trained FP32 model: {acc1_fp32 - acc1_int8:.3f}") # Export INT8 Model to ONNX if not int8_onnx_path.exists(): warnings.filterwarnings("ignore", category=TracerWarning) warnings.filterwarnings("ignore", category=UserWarning) # Export INT8 model to ONNX that is supported by the OpenVINO™ toolkit compression_ctrl.export_model(int8_onnx_path) print(f"INT8 ONNX model exported to {int8_onnx_path}.") # Convert ONNX models to OpenVINO Intermediate Representation (IR) if not fp32_ir_path.exists(): !mo --input_model $fp32_onnx_path --input_shape "[1,3, $image_size, $image_size]" --mean_values "[123.675, 116.28 , 103.53]" --scale_values "[58.395, 57.12 , 57.375]" --data_type FP16 --output_dir $OUTPUT_DIR if not int8_ir_path.exists(): !mo --input_model $int8_onnx_path --input_shape "[1,3, $image_size, $image_size]" --mean_values "[123.675, 116.28 , 103.53]" --scale_values "[58.395, 57.12 , 57.375]" --data_type FP16 --output_dir $OUTPUT_DIR # Benchmark Model Performance by Computing Inference Time def parse_benchmark_output(benchmark_output): parsed_output = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith(" ") or line == "")] print(*parsed_output, sep='\n') print('Benchmark FP32 model (IR)') benchmark_output = ! benchmark_app -m $fp32_ir_path -d CPU -api async -t 15 parse_benchmark_output(benchmark_output) print('Benchmark INT8 model (IR)') benchmark_output = ! benchmark_app -m $int8_ir_path -d CPU -api async -t 15 parse_benchmark_output(benchmark_output) # Show CPU Information for reference ie = Core() ie.get_property(device_name="CPU", name="FULL_DEVICE_NAME")
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #tensorflow #quantization #nncf #optimization
305-tensorflow-quantization-aware-training: Optimizing TensorFlow models with Neural Network Compression Framework of OpenVINO by 8-bit quantization# Imports and Settings from pathlib import Path import logging import tensorflow as tf import tensorflow_datasets as tfds from tensorflow.python.keras import layers from tensorflow.python.keras import models from nncf import NNCFConfig from nncf.tensorflow.helpers.model_creation import create_compressed_model from nncf.tensorflow.initialization import register_default_init_args from nncf.common.utils.logger import set_log_level set_log_level(logging.ERROR) MODEL_DIR = Path("model") OUTPUT_DIR = Path("output") MODEL_DIR.mkdir(exist_ok=True) OUTPUT_DIR.mkdir(exist_ok=True) BASE_MODEL_NAME = "ResNet-18" fp32_h5_path = Path(MODEL_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".h5") fp32_sm_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_fp32")) fp32_ir_path = Path(OUTPUT_DIR / "saved_model").with_suffix(".xml") int8_pb_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_int8")).with_suffix(".pb") int8_pb_name = Path(BASE_MODEL_NAME + "_int8").with_suffix(".pb") int8_ir_path = int8_pb_path.with_suffix(".xml") BATCH_SIZE = 128 IMG_SIZE = (64, 64) # Default Imagenet image size NUM_CLASSES = 10 # For Imagenette dataset LR = 1e-5 MEAN_RGB = (0.485 * 255, 0.456 * 255, 0.406 * 255) # From Imagenet dataset STDDEV_RGB = (0.229 * 255, 0.224 * 255, 0.225 * 255) # From Imagenet dataset fp32_pth_url = "https://storage.openvinotoolkit.org/repositories/nncf/openvino_notebook_ckpts/305_resnet18_imagenette_fp32_v1.h5" _ = tf.keras.utils.get_file(fp32_h5_path.resolve(), fp32_pth_url) print(f'Absolute path where the model weights are saved:\n {fp32_h5_path.resolve()}') # Dataset Preprocessing datasets, datasets_info = tfds.load('imagenette/160px', shuffle_files=True, as_supervised=True, with_info=True, read_config=tfds.ReadConfig(shuffle_seed=0)) train_dataset, validation_dataset = datasets['train'], datasets['validation'] fig = tfds.show_examples(train_dataset, datasets_info) def preprocessing(image, label): image = tf.image.resize(image, IMG_SIZE) image = image - MEAN_RGB image = image / STDDEV_RGB label = tf.one_hot(label, NUM_CLASSES) return image, label train_dataset = (train_dataset.map(preprocessing, num_parallel_calls=tf.data.experimental.AUTOTUNE) .batch(BATCH_SIZE) .prefetch(tf.data.experimental.AUTOTUNE)) validation_dataset = (validation_dataset.map(preprocessing, num_parallel_calls=tf.data.experimental.AUTOTUNE) .batch(BATCH_SIZE) .prefetch(tf.data.experimental.AUTOTUNE)) # Define a Floating-Point Model def residual_conv_block(filters, stage, block, strides=(1, 1), cut='pre'): def layer(input_tensor): x = layers.BatchNormalization(epsilon=2e-5)(input_tensor) x = layers.Activation('relu')(x) # defining shortcut connection if cut == 'pre': shortcut = input_tensor elif cut == 'post': shortcut = layers.Conv2D(filters, (1, 1), strides=strides, kernel_initializer='he_uniform', use_bias=False)(x) # continue with convolution layers x = layers.ZeroPadding2D(padding=(1, 1))(x) x = layers.Conv2D(filters, (3, 3), strides=strides, kernel_initializer='he_uniform', use_bias=False)(x) x = layers.BatchNormalization(epsilon=2e-5)(x) x = layers.Activation('relu')(x) x = layers.ZeroPadding2D(padding=(1, 1))(x) x = layers.Conv2D(filters, (3, 3), kernel_initializer='he_uniform', use_bias=False)(x) # add residual connection x = layers.Add()([x, shortcut]) return x return layer def ResNet18(input_shape=None): """Instantiates the ResNet18 architecture.""" img_input = layers.Input(shape=input_shape, name='data') # ResNet18 bottom x = layers.BatchNormalization(epsilon=2e-5, scale=False)(img_input) x = layers.ZeroPadding2D(padding=(3, 3))(x) x = layers.Conv2D(64, (7, 7), strides=(2, 2), kernel_initializer='he_uniform', use_bias=False)(x) x = layers.BatchNormalization(epsilon=2e-5)(x) x = layers.Activation('relu')(x) x = layers.ZeroPadding2D(padding=(1, 1))(x) x = layers.MaxPooling2D((3, 3), strides=(2, 2), padding='valid')(x) # ResNet18 body repetitions = (2, 2, 2, 2) for stage, rep in enumerate(repetitions): for block in range(rep): filters = 64 * (2 ** stage) if block == 0 and stage == 0: x = residual_conv_block(filters, stage, block, strides=(1, 1), cut='post')(x) elif block == 0: x = residual_conv_block(filters, stage, block, strides=(2, 2), cut='post')(x) else: x = residual_conv_block(filters, stage, block, strides=(1, 1), cut='pre')(x) x = layers.BatchNormalization(epsilon=2e-5)(x) x = layers.Activation('relu')(x) # ResNet18 top x = layers.GlobalAveragePooling2D()(x) x = layers.Dense(NUM_CLASSES)(x) x = layers.Activation('softmax')(x) # Create model model = models.Model(img_input, x) return model IMG_SHAPE = IMG_SIZE + (3,) model = ResNet18(input_shape=IMG_SHAPE) # Pre-train Floating-Point Model # Load the floating-point weights model.load_weights(fp32_h5_path) # Compile the floating-point model model.compile(loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1), metrics=[tf.keras.metrics.CategoricalAccuracy(name='acc@1')]) # Validate the floating-point model test_loss, acc_fp32 = model.evaluate(validation_dataset, callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=['acc@1'])) print(f"\nAccuracy of FP32 model: {acc_fp32:.3f}") model.save(fp32_sm_path) print(f'Absolute path where the model is saved:\n {fp32_sm_path.resolve()}') # Create and Initialize Quantization nncf_config_dict = { "input_info": {"sample_size": [1, 3] + list(IMG_SIZE)}, "log_dir": str(OUTPUT_DIR), # log directory for NNCF-specific logging outputs "compression": { "algorithm": "quantization", # specify the algorithm here }, } nncf_config = NNCFConfig.from_dict(nncf_config_dict) nncf_config = register_default_init_args(nncf_config=nncf_config, data_loader=train_dataset, batch_size=BATCH_SIZE) compression_ctrl, model = create_compressed_model(model, nncf_config) # Compile the int8 model model.compile(optimizer=tf.keras.optimizers.Adam(lr=LR), loss=tf.keras.losses.CategoricalCrossentropy(label_smoothing=0.1), metrics=[tf.keras.metrics.CategoricalAccuracy(name='acc@1')]) # Validate the int8 model test_loss, test_acc = model.evaluate(validation_dataset, callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=['acc@1'])) print(f"\nAccuracy of INT8 model after initialization: {test_acc:.3f}") # Fine-tune the Compressed Model # Train the int8 model model.fit(train_dataset, epochs=2) # Validate the int8 model test_loss, acc_int8 = model.evaluate(validation_dataset, callbacks=tf.keras.callbacks.ProgbarLogger(stateful_metrics=['acc@1'])) print(f"\nAccuracy of INT8 model after fine-tuning: {acc_int8:.3f}") print(f"\nAccuracy drop of tuned INT8 model over pre-trained FP32 model: {acc_fp32 - acc_int8:.3f}") compression_ctrl.export_model(int8_pb_path, 'frozen_graph') print(f'Absolute path where the int8 model is saved:\n {int8_pb_path.resolve()}') # Export Frozen Graph Models to OpenVINO Intermediate Representation (IR) !mo --framework=tf --input_shape=[1,64,64,3] --input=data --saved_model_dir=$fp32_sm_path --output_dir=$OUTPUT_DIR !mo --framework=tf --input_shape=[1,64,64,3] --input=Placeholder --input_model=$int8_pb_path --output_dir=$OUTPUT_DIR # Benchmark Model Performance by Computing Inference Time def parse_benchmark_output(benchmark_output): parsed_output = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith(" ") or line == "")] print(*parsed_output, sep='\n') print('Benchmark FP32 model (IR)') benchmark_output = ! benchmark_app -m $fp32_ir_path -d CPU -api async -t 15 parse_benchmark_output(benchmark_output) print('\nBenchmark INT8 model (IR)') benchmark_output = ! benchmark_app -m $int8_ir_path -d CPU -api async -t 15 parse_benchmark_output(benchmark_output) # Show CPU Information for reference from openvino.runtime import Core ie = Core() ie.get_property(device_name='CPU', name="FULL_DEVICE_NAME")
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #ocr #paddle-paddle #paddle-ocr #nlp
405-paddle-ocr-webcam: PaddleOCR with OpenVINO# Imports import sys import os import cv2 import numpy as np import paddle import math import time import collections from PIL import Image from pathlib import Path import tarfile import urllib.request from openvino.runtime import Core from IPython import display import copy sys.path.append("../utils") import notebook_utils as utils import pre_post_processing as processing # Models for PaddleOCR # Define the function to download text detection and recognition models from PaddleOCR resources def run_model_download(model_url, model_file_path): """ Download pre-trained models from PaddleOCR resources Parameters: model_url: url link to pre-trained models model_file_path: file path to store the downloaded model """ model_name = model_url.split("/")[-1] if model_file_path.is_file(): print("Model already exists") else: # Download the model from the server, and untar it. print("Downloading the pre-trained model... May take a while...") # create a directory os.makedirs("model", exist_ok=True) urllib.request.urlretrieve(model_url, f"model/{model_name} ") print("Model Downloaded") file = tarfile.open(f"model/{model_name} ") res = file.extractall("model") file.close() if not res: print(f"Model Extracted to {model_file_path}.") else: print("Error Extracting the model. Please check the network.") # Download the Model for Text Detection # Directory where model will be downloaded det_model_url = "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_det_infer.tar" det_model_file_path = Path("model/ch_ppocr_mobile_v2.0_det_infer/inference.pdmodel") run_model_download(det_model_url, det_model_file_path) # Load the Model for Text Detection # initialize inference engine for text detection core = Core() det_model = core.read_model(model=det_model_file_path) det_compiled_model = core.compile_model(model=det_model, device_name="CPU") # get input and output nodes for text detection det_input_layer = det_compiled_model.input(0) det_output_layer = det_compiled_model.output(0) # Download the Model for Text Recognition rec_model_url = "https://paddleocr.bj.bcebos.com/dygraph_v2.0/ch/ch_ppocr_mobile_v2.0_rec_infer.tar" rec_model_file_path = Path("model/ch_ppocr_mobile_v2.0_rec_infer/inference.pdmodel") run_model_download(rec_model_url, rec_model_file_path) # Load the Model for Text Recognition with Dynamic Shape # read the model and corresponding weights from file rec_model = core.read_model(model=rec_model_file_path) # assign dynamic shapes to every input layer on the last dimension for input_layer in rec_model.inputs: input_shape = input_layer.partial_shape input_shape[3] = -1 rec_model.reshape({input_layer: input_shape}) rec_compiled_model = core.compile_model(model=rec_model, device_name="CPU") # get input and output nodes rec_input_layer = rec_compiled_model.input(0) rec_output_layer = rec_compiled_model.output(0) # Preprocessing image functions for text detection and recognition # Preprocess for text detection def image_preprocess(input_image, size): """ Preprocess input image for text detection Parameters: input_image: input image size: value for the image to be resized for text detection model """ img = cv2.resize(input_image, (size, size)) img = np.transpose(img, [2, 0, 1]) / 255 img = np.expand_dims(img, 0) # NormalizeImage: {mean: [0.485, 0.456, 0.406], std: [0.229, 0.224, 0.225], is_scale: True} img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1)) img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1)) img -= img_mean img /= img_std return img.astype(np.float32) # Preprocess for text recognition def resize_norm_img(img, max_wh_ratio): """ Resize input image for text recognition Parameters: img: bounding box image from text detection max_wh_ratio: value for the resizing for text recognition model """ rec_image_shape = [3, 32, 320] imgC, imgH, imgW = rec_image_shape assert imgC == img.shape[2] character_type = "ch" if character_type == "ch": imgW = int((32 * max_wh_ratio)) h, w = img.shape[:2] ratio = w / float(h) if math.ceil(imgH * ratio) > imgW: resized_w = imgW else: resized_w = int(math.ceil(imgH * ratio)) resized_image = cv2.resize(img, (resized_w, imgH)) resized_image = resized_image.astype('float32') resized_image = resized_image.transpose((2, 0, 1)) / 255 resized_image -= 0.5 resized_image /= 0.5 padding_im = np.zeros((imgC, imgH, imgW), dtype=np.float32) padding_im[:, :, 0:resized_w] = resized_image return padding_im def prep_for_rec(dt_boxes, frame): """ Preprocessing of the detected bounding boxes for text recognition Parameters: dt_boxes: detected bounding boxes from text detection frame: original input frame """ ori_im = frame.copy() img_crop_list = [] for bno in range(len(dt_boxes)): tmp_box = copy.deepcopy(dt_boxes[bno]) img_crop = processing.get_rotate_crop_image(ori_im, tmp_box) img_crop_list.append(img_crop) img_num = len(img_crop_list) # Calculate the aspect ratio of all text bars width_list = [] for img in img_crop_list: width_list.append(img.shape[1] / float(img.shape[0])) # Sorting can speed up the recognition process indices = np.argsort(np.array(width_list)) return img_crop_list, img_num, indices def batch_text_box(img_crop_list, img_num, indices, beg_img_no, batch_num): """ Batch for text recognition Parameters: img_crop_list: processed detected bounding box images img_num: number of bounding boxes from text detection indices: sorting for bounding boxes to speed up text recognition beg_img_no: the beginning number of bounding boxes for each batch of text recognition inference batch_num: number of images for each batch """ norm_img_batch = [] max_wh_ratio = 0 end_img_no = min(img_num, beg_img_no + batch_num) for ino in range(beg_img_no, end_img_no): h, w = img_crop_list[indices[ino]].shape[0:2] wh_ratio = w * 1.0 / h max_wh_ratio = max(max_wh_ratio, wh_ratio) for ino in range(beg_img_no, end_img_no): norm_img = resize_norm_img(img_crop_list[indices[ino]], max_wh_ratio) norm_img = norm_img[np.newaxis, :] norm_img_batch.append(norm_img) norm_img_batch = np.concatenate(norm_img_batch) norm_img_batch = norm_img_batch.copy() return norm_img_batch # Postprocessing image for text detection def post_processing_detection(frame, det_results): """ Postprocess the results from text detection into bounding boxes Parameters: frame: input image det_results: inference results from text detection model """ ori_im = frame.copy() data = {'image': frame} data_resize = processing.DetResizeForTest(data) data_list = [] keep_keys = ['image', 'shape'] for key in keep_keys: data_list.append(data_resize[key]) img, shape_list = data_list shape_list = np.expand_dims(shape_list, axis=0) pred = det_results[0] if isinstance(pred, paddle.Tensor): pred = pred.numpy() segmentation = pred > 0.3 boxes_batch = [] for batch_index in range(pred.shape[0]): src_h, src_w, ratio_h, ratio_w = shape_list[batch_index] mask = segmentation[batch_index] boxes, scores = processing.boxes_from_bitmap(pred[batch_index], mask, src_w, src_h) boxes_batch.append({'points': boxes}) post_result = boxes_batch dt_boxes = post_result[0]['points'] dt_boxes = processing.filter_tag_det_res(dt_boxes, ori_im.shape) return dt_boxes # Main processing function for PaddleOCR def run_paddle_ocr(source=0, flip=False, use_popup=False, skip_first_frames=0): """ Main function to run the paddleOCR inference: 1. Create a video player to play with target fps (utils.VideoPlayer). 2. Prepare a set of frames for text detection and recognition. 3. Run AI inference for both text detection and recognition. 4. Visualize the results. Parameters: source: the webcam number to feed the video stream with primary webcam set to "0", or the video path. flip: to be used by VideoPlayer function for flipping capture image use_popup: False for showing encoded frames over this notebook, True for creating a popup window. skip_first_frames: Number of frames to skip at the beginning of the video. """ # create video player to play with target fps player = None try: player = utils.VideoPlayer(source=source, flip=flip, fps=30, skip_first_frames=skip_first_frames) # Start video capturing player.start() if use_popup: title = "Press ESC to Exit" cv2.namedWindow(winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE) processing_times = collections.deque() while True: # grab the frame frame = player.next() if frame is None: print("Source ended") break # if frame larger than full HD, reduce size to improve the performance scale = 1280 / max(frame.shape) if scale < 1: frame = cv2.resize(src=frame, dsize=None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) # preprocess image for text detection test_image = image_preprocess(frame, 640) # measure processing time for text detection start_time = time.time() # perform the inference step det_results = det_compiled_model([test_image])[det_output_layer] stop_time = time.time() # Postprocessing for Paddle Detection dt_boxes = post_processing_detection(frame, det_results) processing_times.append(stop_time - start_time) # use processing times from last 200 frames if len(processing_times) > 200: processing_times.popleft() processing_time_det = np.mean(processing_times) * 1000 # Preprocess detection results for recognition dt_boxes = processing.sorted_boxes(dt_boxes) batch_num = 6 img_crop_list, img_num, indices = prep_for_rec(dt_boxes, frame) # For storing recognition results, include two parts: # txts are the recognized text results, scores are the recognition confidence level rec_res = [['', 0.0]] * img_num txts = [] scores = [] for beg_img_no in range(0, img_num, batch_num): # Recognition starts from here norm_img_batch = batch_text_box( img_crop_list, img_num, indices, beg_img_no, batch_num) # Run inference for text recognition rec_results = rec_compiled_model([norm_img_batch])[rec_output_layer] # Postprocessing recognition results postprocess_op = processing.build_post_process(processing.postprocess_params) rec_result = postprocess_op(rec_results) for rno in range(len(rec_result)): rec_res[indices[beg_img_no + rno]] = rec_result[rno] if rec_res: txts = [rec_res[i][0] for i in range(len(rec_res))] scores = [rec_res[i][1] for i in range(len(rec_res))] image = Image.fromarray(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)) boxes = dt_boxes # draw text recognition results beside the image draw_img = processing.draw_ocr_box_txt( image, boxes, txts, scores, drop_score=0.5) # Visualize PaddleOCR results f_height, f_width = draw_img.shape[:2] fps = 1000 / processing_time_det cv2.putText(img=draw_img, text=f"Inference time: {processing_time_det:.1f}ms ({fps:.1f} FPS)", org=(20, 40),fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=f_width / 1000, color=(0, 0, 255), thickness=1, lineType=cv2.LINE_AA) # use this workaround if there is flickering if use_popup: draw_img = cv2.cvtColor(draw_img, cv2.COLOR_RGB2BGR) cv2.imshow(winname=title, mat=draw_img) key = cv2.waitKey(1) # escape = 27 if key == 27: break else: # encode numpy array to jpg draw_img = cv2.cvtColor(draw_img, cv2.COLOR_RGB2BGR) _, encoded_img = cv2.imencode(ext=".jpg", img=draw_img, params=[cv2.IMWRITE_JPEG_QUALITY, 100]) # create IPython image i = display.Image(data=encoded_img) # display the image in this notebook display.clear_output(wait=True) display.display(i) # ctrl-c except KeyboardInterrupt: print("Interrupted") # any different error except RuntimeError as e: print(e) finally: if player is not None: # stop capturing player.stop() if use_popup: cv2.destroyAllWindows() # Run Live PaddleOCR with OpenVINO run_paddle_ocr(source=0, flip=False, use_popup=False) # Test OCR results on video file video_file = "https://raw.githubusercontent.com/yoyowz/classification/master/images/test.mp4" run_paddle_ocr(source=video_file, flip=False, use_popup=False, skip_first_frames=0)
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #object-detection #onnx #onnx-runtime #openvino-onnx-runtime #openvino-execution-provider-for-onnx #tiny-yolov4
Object detection with YOLOv4 in Python using OpenVINO™ Execution Provider# pip3 install openvino # Install ONNX Runtime for OpenVINO™ Execution Provider # pip3 install onnxruntime-openvino==1.11.0 # pip3 install -r requirements.txt # Running the ONNXRuntime OpenVINO™ Execution Provider sample # python3 yolov4.py --device CPU_FP32 --video classroom.mp4 --model yolov4.onnx ''' Copyright (C) 2021-2022, Intel Corporation SPDX-License-Identifier: Apache-2.0 Major Portions of this code are copyright of their respective authors and released under the Apache License Version 2.0: - onnx, Copyright 2021-2022. For licensing see https://github.com/onnx/models/blob/master/LICENSE ''' import cv2 import numpy as np from onnx import numpy_helper import onnx import onnxruntime as rt import os from PIL import Image from scipy import special import colorsys import random import argparse import sys import time import platform if platform.system() == "Windows": from openvino import utils utils.add_openvino_libs_to_path() def image_preprocess(image, target_size, gt_boxes=None): ih, iw = target_size h, w, _ = image.shape scale = min(iw/w, ih/h) nw, nh = int(scale * w), int(scale * h) image_resized = cv2.resize(image, (nw, nh)) image_padded = np.full(shape=[ih, iw, 3], fill_value=128.0) dw, dh = (iw - nw) // 2, (ih-nh) // 2 image_padded[dh:nh+dh, dw:nw+dw, :] = image_resized image_padded = image_padded / 255. if gt_boxes is None: return image_padded else: gt_boxes[:, [0, 2]] = gt_boxes[:, [0, 2]] * scale + dw gt_boxes[:, [1, 3]] = gt_boxes[:, [1, 3]] * scale + dh return image_padded, gt_boxes def postprocess_bbbox(pred_bbox): '''define anchor boxes''' for i, pred in enumerate(pred_bbox): conv_shape = pred.shape output_size = conv_shape[1] conv_raw_dxdy = pred[:, :, :, :, 0:2] conv_raw_dwdh = pred[:, :, :, :, 2:4] xy_grid = np.meshgrid(np.arange(output_size), np.arange(output_size)) xy_grid = np.expand_dims(np.stack(xy_grid, axis=-1), axis=2) xy_grid = np.tile(np.expand_dims(xy_grid, axis=0), [1, 1, 1, 3, 1]) xy_grid = xy_grid.astype(float) pred_xy = ((special.expit(conv_raw_dxdy) * XYSCALE[i]) - 0.5 * (XYSCALE[i] - 1) + xy_grid) * STRIDES[i] pred_wh = (np.exp(conv_raw_dwdh) * ANCHORS[i]) pred[:, :, :, :, 0:4] = np.concatenate([pred_xy, pred_wh], axis=-1) pred_bbox = [np.reshape(x, (-1, np.shape(x)[-1])) for x in pred_bbox] pred_bbox = np.concatenate(pred_bbox, axis=0) return pred_bbox def postprocess_boxes(pred_bbox, org_img_shape, input_size, score_threshold): '''remove boundary boxs with a low detection probability''' valid_scale=[0, np.inf] pred_bbox = np.array(pred_bbox) pred_xywh = pred_bbox[:, 0:4] pred_conf = pred_bbox[:, 4] pred_prob = pred_bbox[:, 5:] # # (1) (x, y, w, h) --> (xmin, ymin, xmax, ymax) pred_coor = np.concatenate([pred_xywh[:, :2] - pred_xywh[:, 2:] * 0.5, pred_xywh[:, :2] + pred_xywh[:, 2:] * 0.5], axis=-1) # # (2) (xmin, ymin, xmax, ymax) -> (xmin_org, ymin_org, xmax_org, ymax_org) org_h, org_w = org_img_shape resize_ratio = min(input_size / org_w, input_size / org_h) dw = (input_size - resize_ratio * org_w) / 2 dh = (input_size - resize_ratio * org_h) / 2 pred_coor[:, 0::2] = 1.0 * (pred_coor[:, 0::2] - dw) / resize_ratio pred_coor[:, 1::2] = 1.0 * (pred_coor[:, 1::2] - dh) / resize_ratio # # (3) clip some boxes that are out of range pred_coor = np.concatenate([np.maximum(pred_coor[:, :2], [0, 0]), np.minimum(pred_coor[:, 2:], [org_w - 1, org_h - 1])], axis=-1) invalid_mask = np.logical_or((pred_coor[:, 0] > pred_coor[:, 2]), (pred_coor[:, 1] > pred_coor[:, 3])) pred_coor[invalid_mask] = 0 # # (4) discard some invalid boxes bboxes_scale = np.sqrt(np.multiply.reduce(pred_coor[:, 2:4] - pred_coor[:, 0:2], axis=-1)) scale_mask = np.logical_and((valid_scale[0] < bboxes_scale), (bboxes_scale < valid_scale[1])) # # (5) discard some boxes with low scores classes = np.argmax(pred_prob, axis=-1) scores = pred_conf * pred_prob[np.arange(len(pred_coor)), classes] score_mask = scores > score_threshold mask = np.logical_and(scale_mask, score_mask) coors, scores, classes = pred_coor[mask], scores[mask], classes[mask] return np.concatenate([coors, scores[:, np.newaxis], classes[:, np.newaxis]], axis=-1) def bboxes_iou(boxes1, boxes2): '''calculate the Intersection Over Union value''' boxes1 = np.array(boxes1) boxes2 = np.array(boxes2) boxes1_area = (boxes1[..., 2] - boxes1[..., 0]) * (boxes1[..., 3] - boxes1[..., 1]) boxes2_area = (boxes2[..., 2] - boxes2[..., 0]) * (boxes2[..., 3] - boxes2[..., 1]) left_up = np.maximum(boxes1[..., :2], boxes2[..., :2]) right_down = np.minimum(boxes1[..., 2:], boxes2[..., 2:]) inter_section = np.maximum(right_down - left_up, 0.0) inter_area = inter_section[..., 0] * inter_section[..., 1] union_area = boxes1_area + boxes2_area - inter_area ious = np.maximum(1.0 * inter_area / union_area, np.finfo(np.float32).eps) return ious def nms(bboxes, iou_threshold, sigma=0.3, method='nms'): """ :param bboxes: (xmin, ymin, xmax, ymax, score, class) Note: soft-nms, https://arxiv.org/pdf/1704.04503.pdf https://github.com/bharatsingh430/soft-nms """ classes_in_img = list(set(bboxes[:, 5])) best_bboxes = [] for cls in classes_in_img: cls_mask = (bboxes[:, 5] == cls) cls_bboxes = bboxes[cls_mask] while len(cls_bboxes) > 0: max_ind = np.argmax(cls_bboxes[:, 4]) best_bbox = cls_bboxes[max_ind] best_bboxes.append(best_bbox) cls_bboxes = np.concatenate([cls_bboxes[: max_ind], cls_bboxes[max_ind + 1:]]) iou = bboxes_iou(best_bbox[np.newaxis, :4], cls_bboxes[:, :4]) weight = np.ones((len(iou),), dtype=np.float32) assert method in ['nms', 'soft-nms'] if method == 'nms': iou_mask = iou > iou_threshold weight[iou_mask] = 0.0 if method == 'soft-nms': weight = np.exp(-(1.0 * iou ** 2 / sigma)) cls_bboxes[:, 4] = cls_bboxes[:, 4] * weight score_mask = cls_bboxes[:, 4] > 0. cls_bboxes = cls_bboxes[score_mask] return best_bboxes def read_class_names(class_file_name): '''loads class name from a file''' names = {} with open(class_file_name, 'r') as data: for ID, name in enumerate(data): names[ID] = name.strip('\n') return names def draw_bbox(image, bboxes, classes=read_class_names("coco.names"), show_label=True): """ bboxes: [x_min, y_min, x_max, y_max, probability, cls_id] format coordinates. """ num_classes = len(classes) image_h, image_w, _ = image.shape hsv_tuples = [(1.0 * x / num_classes, 1., 1.) for x in range(num_classes)] colors = list(map(lambda x: colorsys.hsv_to_rgb(*x), hsv_tuples)) colors = list(map(lambda x: (int(x[0] * 255), int(x[1] * 255), int(x[2] * 255)), colors)) random.seed(0) random.shuffle(colors) random.seed(None) for i, bbox in enumerate(bboxes): coor = np.array(bbox[:4], dtype=np.int32) fontScale = 0.5 score = bbox[4] class_ind = int(bbox[5]) bbox_color = colors[class_ind] bbox_thick = int(0.6 * (image_h + image_w) / 600) c1, c2 = (coor[0], coor[1]), (coor[2], coor[3]) cv2.rectangle(image, c1, c2, bbox_color, bbox_thick) if show_label: bbox_mess = '%s: %.2f' % (classes[class_ind], score) t_size = cv2.getTextSize(bbox_mess, 0, fontScale, thickness=bbox_thick//2)[0] cv2.rectangle(image, c1, (c1[0] + t_size[0], c1[1] - t_size[1] - 3), bbox_color, -1) cv2.putText(image, bbox_mess, (c1[0], c1[1]-2), cv2.FONT_HERSHEY_SIMPLEX, fontScale, (0, 0, 0), bbox_thick//2, lineType=cv2.LINE_AA) return image def get_anchors(anchors_path, tiny=False): '''loads the anchors from a file''' with open(anchors_path) as f: anchors = f.readline() anchors = np.array(anchors.split(','), dtype=np.float32) return anchors.reshape(3, 3, 2) #Specify the path to anchors file on your machine ANCHORS = "./yolov4_anchors.txt" STRIDES = [8, 16, 32] XYSCALE = [1.2, 1.1, 1.05] ANCHORS = get_anchors(ANCHORS) STRIDES = np.array(STRIDES) def parse_arguments(): parser = argparse.ArgumentParser(description='Object Detection using YOLOv4 in OPENCV using OpenVINO Execution Provider for ONNXRuntime') parser.add_argument('--device', default='CPU_FP32', help="Device to perform inference on 'cpu (MLAS)' or on devices supported by OpenVINO-EP [CPU_FP32, GPU_FP32, GPU_FP16, MYRIAD_FP16, VAD-M_FP16].") parser.add_argument('--image', help='Path to image file.') parser.add_argument('--video', help='Path to video file.') parser.add_argument('--model', help='Path to model.') args = parser.parse_args() return args def check_model_extension(fp): # Split the extension from the path and normalise it to lowercase. ext = os.path.splitext(fp)[-1].lower() # Now we can simply use != to check for inequality, no need for wildcards. if(ext != ".onnx"): raise Exception(fp, "is an unknown file format. Use the model ending with .onnx format") if not os.path.exists(fp): raise Exception("[ ERROR ] Path of the onnx model file is Invalid") def main(): # Process arguments args = parse_arguments() # Validate model file path check_model_extension(args.model) # Process inputs win_name = 'Object detection using ONNXRuntime OpenVINO Execution Provider using YoloV4 model' cv2.namedWindow(win_name, cv2.WINDOW_NORMAL) output_file = "yolo_out_py.avi" if (args.image): # Open the image file if not os.path.isfile(args.image): print("Input image file ", args.image, " doesn't exist") sys.exit(1) cap = cv2.VideoCapture(args.image) output_file = args.image[:-4]+'_yolo_out_py.jpg' elif (args.video): # Open the video file if not os.path.isfile(args.video): print("Input video file ", args.video, " doesn't exist") sys.exit(1) cap = cv2.VideoCapture(args.video) output_file = args.video[:-4]+'_yolo_out_py.avi' else: # Webcam input cap = cv2.VideoCapture(0) # Get the video writer initialized to save the output video if (not args.image): vid_writer = cv2.VideoWriter(output_file, cv2.VideoWriter_fourcc('M','J','P','G'), 30, (round(cap.get(cv2.CAP_PROP_FRAME_WIDTH)),round(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)))) # Check the device information and create a session device = args.device so = rt.SessionOptions() so.log_severity_level = 3 if(args.device == 'cpu'): print("Device type selected is 'cpu' which is the default CPU Execution Provider (MLAS)") #Specify the path to the ONNX model on your machine and register the CPU EP sess = rt.InferenceSession(args.model, so, providers=['CPUExecutionProvider']) else: #Specify the path to the ONNX model on your machine and register the OpenVINO EP sess = rt.InferenceSession(args.model, so, providers=['OpenVINOExecutionProvider'], provider_options=[{'device_type' : device}]) print("Device type selected is: " + device + " using the OpenVINO Execution Provider") ''' other 'device_type' options are: (Any hardware target can be assigned if you have the access to it) 'CPU_FP32', 'GPU_FP32', 'GPU_FP16', 'MYRIAD_FP16', 'VAD-M_FP16' ''' input_name = sess.get_inputs()[0].name while cv2.waitKey(1) < 0: # get frame from the video has_frame, frame = cap.read() # Stop the program if reached end of video if not has_frame: print("Done processing !!!") print("Output file is stored as ", output_file) has_frame=False cv2.waitKey(3000) # Release device cap.release() break input_size = 416 original_image = frame original_image = cv2.cvtColor(original_image, cv2.COLOR_BGR2RGB) original_image_size = original_image.shape[:2] image_data = image_preprocess(np.copy(original_image), [input_size, input_size]) image_data = image_data[np.newaxis, ...].astype(np.float32) outputs = sess.get_outputs() output_names = list(map(lambda output: output.name, outputs)) start = time.time() detections = sess.run(output_names, {input_name: image_data}) end = time.time() inference_time = end - start pred_bbox = postprocess_bbbox(detections) bboxes = postprocess_boxes(pred_bbox, original_image_size, input_size, 0.25) bboxes = nms(bboxes, 0.213, method='nms') image = draw_bbox(original_image, bboxes) cv2.putText(image,device,(10,20),cv2.FONT_HERSHEY_COMPLEX,0.5,(255,255,255),1) cv2.putText(image,'FPS: {}'.format(1.0/inference_time),(10,40),cv2.FONT_HERSHEY_COMPLEX,0.5,(255,255,255),1) # Write the frame with the detection boxes if (args.image): cv2.imwrite(output_file, image.astype(np.uint8)) else: vid_writer.write(image.astype(np.uint8)) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) cv2.imshow(win_name, image) if __name__ == "__main__": main()
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #object-detection #onnx #onnx-runtime #openvino-onnx-runtime #yolov2 #openvino-execution-provider-for-onnx
Object detection with tinyYOLOv2 in Python using OpenVINO™ Execution Provider# pip3 install openvino # Install ONNX Runtime for OpenVINO™ Execution Provider # pip3 install onnxruntime-openvino==1.11.0 # pip3 install -r requirements.txt # How to run the sample # python3 tiny_yolov2_obj_detection_sample.py --h # Running the ONNXRuntime OpenVINO™ Execution Provider sample # python3 tiny_yolov2_obj_detection_sample.py --video face-demographics-walking-and-pause.mp4 --model tinyyolov2.onnx --device CPU_FP32 ''' Copyright (C) 2021-2022, Intel Corporation SPDX-License-Identifier: Apache-2.0 ''' import numpy as np import onnxruntime as rt import cv2 import time import os import argparse import platform if platform.system() == "Windows": from openvino import utils utils.add_openvino_libs_to_path() # color look up table for different classes for object detection sample clut = [(0,0,0),(255,0,0),(255,0,255),(0,0,255),(0,255,0),(0,255,128), (128,255,0),(128,128,0),(0,128,255),(128,0,128), (255,0,128),(128,0,255),(255,128,128),(128,255,128),(255,255,0), (255,128,128),(128,128,255),(255,128,128),(128,255,128),(128,255,128)] # 20 labels that the tiny-yolov2 model can do the object_detection on label = ["aeroplane","bicycle","bird","boat","bottle", "bus","car","cat","chair","cow","diningtable", "dog","horse","motorbike","person","pottedplant", "sheep","sofa","train","tvmonitor"] def parse_arguments(): parser = argparse.ArgumentParser(description='Object Detection using YOLOv2 in OPENCV using OpenVINO Execution Provider for ONNXRuntime') parser.add_argument('--device', default='CPU_FP32', help="Device to perform inference on 'cpu (MLAS)' or on devices supported by OpenVINO-EP [CPU_FP32, GPU_FP32, GPU_FP16, MYRIAD_FP16, VAD-M_FP16].") parser.add_argument('--video', help='Path to video file.') parser.add_argument('--model', help='Path to model.') args = parser.parse_args() return args def sigmoid(x, derivative=False): return x*(1-x) if derivative else 1/(1+np.exp(-x)) def softmax(x): score_mat_exp = np.exp(np.asarray(x)) return score_mat_exp / score_mat_exp.sum(0) def check_model_extension(fp): # Split the extension from the path and normalise it to lowercase. ext = os.path.splitext(fp)[-1].lower() # Now we can simply use != to check for inequality, no need for wildcards. if(ext != ".onnx"): raise Exception(fp, "is an unknown file format. Use the model ending with .onnx format") if not os.path.exists(fp): raise Exception("[ ERROR ] Path of the onnx model file is Invalid") def check_video_file_extension(fp): # Split the extension from the path and normalise it to lowercase. ext = os.path.splitext(fp)[-1].lower() # Now we can simply use != to check for inequality, no need for wildcards. if(ext == ".mp4" or ext == ".avi" or ext == ".mov"): pass else: raise Exception(fp, "is an unknown file format. Use the video file ending with .mp4 or .avi or .mov formats") if not os.path.exists(fp): raise Exception("[ ERROR ] Path of the video file is Invalid") def image_preprocess(frame): in_frame = cv2.resize(frame, (416, 416)) preprocessed_image = np.asarray(in_frame) preprocessed_image = preprocessed_image.astype(np.float32) preprocessed_image = preprocessed_image.transpose(2,0,1) #Reshaping the input array to align with the input shape of the model preprocessed_image = preprocessed_image.reshape(1,3,416,416) return preprocessed_image def postprocess_output(out, frame, x_scale, y_scale, i): out = out[0][0] num_classes = 20 anchors = [1.08, 1.19, 3.42, 4.41, 6.63, 11.38, 9.42, 5.11, 16.62, 10.52] existing_labels = {l: [] for l in label} #Inside this loop we compute the bounding box b for grid cell (cy, cx) for cy in range(0,13): for cx in range(0,13): for b in range(0,5): # First we read the tx, ty, width(tw), and height(th) for the bounding box from the out array, as well as the confidence score channel = b*(num_classes+5) tx = out[channel ][cy][cx] ty = out[channel+1][cy][cx] tw = out[channel+2][cy][cx] th = out[channel+3][cy][cx] tc = out[channel+4][cy][cx] x = (float(cx) + sigmoid(tx))*32 y = (float(cy) + sigmoid(ty))*32 w = np.exp(tw) * 32 * anchors[2*b] h = np.exp(th) * 32 * anchors[2*b+1] #calculating the confidence score confidence = sigmoid(tc) # The confidence value for the bounding box is given by tc classes = np.zeros(num_classes) for c in range(0,num_classes): classes[c] = out[channel + 5 +c][cy][cx] # we take the softmax to turn the array into a probability distribution. And then we pick the class with the largest score as the winner. classes = softmax(classes) detected_class = classes.argmax() # Now we can compute the final score for this bounding box and we only want to keep the ones whose combined score is over a certain threshold if 0.60 < classes[detected_class]*confidence: color =clut[detected_class] x = (x - w/2)*x_scale y = (y - h/2)*y_scale w *= x_scale h *= y_scale labelX = int((x+x+w)/2) labelY = int((y+y+h)/2) addLabel = True lab_threshold = 100 for point in existing_labels[label[detected_class]]: if labelX < point[0] + lab_threshold and labelX > point[0] - lab_threshold and \ labelY < point[1] + lab_threshold and labelY > point[1] - lab_threshold: addLabel = False #Adding class labels to the output of the frame and also drawing a rectangular bounding box around the object detected. if addLabel: cv2.rectangle(frame, (int(x),int(y)),(int(x+w),int(y+h)),color,2) cv2.rectangle(frame, (int(x),int(y-13)),(int(x)+9*len(label[detected_class]),int(y)),color,-1) cv2.putText(frame,label[detected_class],(int(x)+2,int(y)-3),cv2.FONT_HERSHEY_COMPLEX,0.4,(255,255,255),1) existing_labels[label[detected_class]].append((labelX,labelY)) print('{} detected in frame {}'.format(label[detected_class],i)) def show_bbox(device, frame, inference_time): cv2.putText(frame,device,(10,20),cv2.FONT_HERSHEY_COMPLEX,0.5,(255,255,255),1) cv2.putText(frame,'FPS: {}'.format(1.0/inference_time),(10,40),cv2.FONT_HERSHEY_COMPLEX,0.5,(255,255,255),1) frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) cv2.imshow('frame',frame) def main(): # Process arguments args = parse_arguments() # Validate model file path check_model_extension(args.model) so = rt.SessionOptions() so.log_severity_level = 3 if (args.device == 'cpu'): print("Device type selected is 'cpu' which is the default CPU Execution Provider (MLAS)") #Specify the path to the ONNX model on your machine and register the CPU EP sess = rt.InferenceSession(args.model, so, providers=['CPUExecutionProvider']) elif (args.device == 'CPU_FP32' or args.device == 'GPU_FP32' or args.device == 'GPU_FP16' or args.device == 'MYRIAD_FP16' or args.device == 'VADM_FP16'): #Specify the path to the ONNX model on your machine and register the OpenVINO EP sess = rt.InferenceSession(args.model, so, providers=['OpenVINOExecutionProvider'], provider_options=[{'device_type' : args.device}]) print("Device type selected is: " + args.device + " using the OpenVINO Execution Provider") ''' other 'device_type' options are: (Any hardware target can be assigned if you have the access to it) 'CPU_FP32', 'GPU_FP32', 'GPU_FP16', 'MYRIAD_FP16', 'VAD-M_FP16' ''' else: raise Exception("Device type selected is not [cpu, CPU_FP32, GPU_FP32, GPU_FP16, MYRIAD_FP16, VADM_FP16]") # Get the input name of the model input_name = sess.get_inputs()[0].name #validate video file input path check_video_file_extension(args.video) #Path to video file has to be provided cap = cv2.VideoCapture(args.video) # capturing different metrics of the image from the video fps = cap.get(cv2.CAP_PROP_FPS) width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) x_scale = float(width)/416.0 #In the document of tino-yolo-v2, input shape of this network is (1,3,416,416). y_scale = float(height)/416.0 # writing the inferencing output as a video to the local disk fourcc = cv2.VideoWriter_fourcc(*'XVID') output_video_name = args.device + "_output.avi" output_video = cv2.VideoWriter(output_video_name,fourcc, float(17.0), (640,360)) # capturing one frame at a time from the video feed and performing the inference i = 0 while cv2.waitKey(1) < 0: l_start = time.time() ret, frame = cap.read() if not ret: break initial_w = cap.get(3) initial_h = cap.get(4) # preprocessing the input frame and reshaping it. #In the document of tino-yolo-v2, input shape of this network is (1,3,416,416). so we resize the model frame w.r.t that size. preprocessed_image = image_preprocess(frame) start = time.time() #Running the session by passing in the input data of the model out = sess.run(None, {input_name: preprocessed_image}) end = time.time() inference_time = end - start #Get the output postprocess_output(out, frame, x_scale, y_scale, i) #Show the Output output_video.write(frame) show_bbox(args.device, frame, inference_time) #Press 'q' to quit the process print('Processed Frame {}'.format(i)) i += 1 l_end = time.time() print('Loop Time = {}'.format(l_end - l_start)) output_video.release() cv2.destroyAllWindows() if __name__ == "__main__": main()
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #ocr #chinese #japanese #handwritten
209-handwritten-ocr: Handwritten Chinese and Japanese OCR# Imports from collections import namedtuple from itertools import groupby from pathlib import Path import cv2 import matplotlib.pyplot as plt import numpy as np from openvino.runtime import Core # Settings # Directories where data will be placed model_folder = "model" data_folder = "data" charlist_folder = f"{data_folder}/charlists" # Precision used by model precision = "FP16" Language = namedtuple( typename="Language", field_names=["model_name", "charlist_name", "demo_image_name"] ) chinese_files = Language( model_name="handwritten-simplified-chinese-recognition-0001", charlist_name="chinese_charlist.txt", demo_image_name="handwritten_chinese_test.jpg", ) japanese_files = Language( model_name="handwritten-japanese-recognition-0001", charlist_name="japanese_charlist.txt", demo_image_name="handwritten_japanese_test.png", ) # Select Language # Select language by using either language='chinese' or language='japanese' language = "chinese" languages = {"chinese": chinese_files, "japanese": japanese_files} selected_language = languages.get(language) # Download Model path_to_model_weights = Path(f'{model_folder}/intel/{selected_language.model_name}/{precision}/{selected_language.model_name}.bin') if not path_to_model_weights.is_file(): download_command = f'omz_downloader --name {selected_language.model_name} --output_dir {model_folder} --precision {precision}' print(download_command) ! $download_command # Load Network and Execute ie = Core() path_to_model = path_to_model_weights.with_suffix(".xml") model = ie.read_model(model=path_to_model) # Select Device Name # To check available device names run the line below # print(ie.available_devices) compiled_model = ie.compile_model(model=model, device_name="CPU") # Fetch Information About Input and Output Layers recognition_output_layer = compiled_model.output(0) recognition_input_layer = compiled_model.input(0) # Load an Image # Read file name of demo file based on the selected model file_name = selected_language.demo_image_name # Text detection models expects an image in grayscale format # IMPORTANT!!! This model allows to read only one line at time # Read image image = cv2.imread(filename=f"{data_folder}/{file_name}", flags=cv2.IMREAD_GRAYSCALE) # Fetch shape image_height, _ = image.shape # B,C,H,W = batch size, number of channels, height, width _, _, H, W = recognition_input_layer.shape # Calculate scale ratio between input shape height and image height to resize image scale_ratio = H / image_height # Resize image to expected input sizes resized_image = cv2.resize( image, None, fx=scale_ratio, fy=scale_ratio, interpolation=cv2.INTER_AREA ) # Pad image to match input size, without changing aspect ratio resized_image = np.pad( resized_image, ((0, 0), (0, W - resized_image.shape[1])), mode="edge" ) # Reshape to network the input shape input_image = resized_image[None, None, :, :] # Visualise Input Image plt.figure(figsize=(20, 1)) plt.axis("off") plt.imshow(resized_image, cmap="gray", vmin=0, vmax=255); # Prepare Charlist # Get dictionary to encode output, based on model documentation used_charlist = selected_language.charlist_name # With both models, there should be blank symbol added at index 0 of each charlist blank_char = "~" with open(f"{charlist_folder}/{used_charlist}", "r", encoding="utf-8") as charlist: letters = blank_char + "".join(line.strip() for line in charlist) # Run Inference # Run inference on the model predictions = compiled_model([input_image])[recognition_output_layer] # Process Output Data # Remove batch dimension predictions = np.squeeze(predictions) # Run argmax to pick the symbols with the highest probability predictions_indexes = np.argmax(predictions, axis=1) # Use groupby to remove concurrent letters, as required by CTC greedy decoding output_text_indexes = list(groupby(predictions_indexes)) # Remove grouper objects output_text_indexes, _ = np.transpose(output_text_indexes, (1, 0)) # Remove blank symbols output_text_indexes = output_text_indexes[output_text_indexes != 0] # Assign letters to indexes from output array output_text = [letters[letter_index] for letter_index in output_text_indexes] # Print Output plt.figure(figsize=(20, 1)) plt.axis("off") plt.imshow(resized_image, cmap="gray", vmin=0, vmax=255) print("".join(output_text))
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #ocr
208-optical-character-recognition: Optical Character Recognition (OCR) with OpenVINO# Imports import shutil import sys from pathlib import Path import cv2 import matplotlib.pyplot as plt import numpy as np from IPython.display import Markdown, display from PIL import Image from openvino.runtime import Core from yaspin import yaspin sys.path.append("../utils") from notebook_utils import load_image # Settings ie = Core() model_dir = Path("model") precision = "FP16" detection_model = "horizontal-text-detection-0001" recognition_model = "text-recognition-resnet-fc" base_model_dir = Path("~/open_model_zoo_models").expanduser() omz_cache_dir = Path("~/open_model_zoo_cache").expanduser() model_dir.mkdir(exist_ok=True) # Download Models download_command = f"omz_downloader --name {detection_model},{recognition_model} --output_dir {base_model_dir} --cache_dir {omz_cache_dir} --precision {precision}" display(Markdown(f"Download command: `{download_command}`")) with yaspin(text=f"Downloading {detection_model}, {recognition_model}") as sp: download_result = !$download_command print(download_result) sp.text = f"Finished downloading {detection_model}, {recognition_model}" sp.ok("✔") # Convert Models convert_command = f"omz_converter --name {recognition_model} --precisions {precision} --download_dir {base_model_dir} --output_dir {base_model_dir}" display(Markdown(f"Convert command: `{convert_command}`")) display(Markdown(f"Converting {recognition_model}...")) ! $convert_command # Copy Models models_info_output = %sx omz_info_dumper --name $detection_model,$recognition_model print(f'sx omz_info_dumper --name {detection_model},{recognition_model}') detection_model_info, recognition_model_info = [ { "name": "horizontal-text-detection-0001", "composite_model_name": None, "description": "Horizontal text detector based on FCOS with light MobileNetV2 backbone", "framework": "dldt", "license_url": "https://raw.githubusercontent.com/openvinotoolkit/open_model_zoo/master/LICENSE", "precisions": [ "FP16", "FP16-INT8", "FP32" ], "quantization_output_precisions": [], "subdirectory": "intel/horizontal-text-detection-0001", "task_type": "detection" }, { "name": "text-recognition-resnet-fc", "composite_model_name": None, "description": "\"text-recognition-resnet-fc\" is a simple and preformant scene text recognition model based on ResNet with Fully Connected text recognition head. Source implementation on a PyTorch* framework could be found here <https://github.com/Media-Smart/vedastr>. Model is able to recognize alphanumeric text.", "framework": "pytorch", "license_url": "https://raw.githubusercontent.com/Media-Smart/vedastr/0fd2a0bd7819ae4daa2a161501e9f1c2ac67e96a/LICENSE", "precisions": [ "FP16", "FP32" ], "quantization_output_precisions": [], "subdirectory": "public/text-recognition-resnet-fc", "task_type": "optical_character_recognition" } ] for model_info in (detection_model_info, recognition_model_info): omz_dir = Path(model_info["subdirectory"]) omz_model_dir = base_model_dir / omz_dir / precision print(omz_model_dir) for model_file in omz_model_dir.iterdir(): try: shutil.copyfile(model_file, model_dir / model_file.name) except FileExistsError: pass detection_model_path = (model_dir / detection_model).with_suffix(".xml") recognition_model_path = (model_dir / recognition_model).with_suffix(".xml") # Load Detection Model detection_model = ie.read_model( model=detection_model_path, weights=detection_model_path.with_suffix(".bin") ) detection_compiled_model = ie.compile_model(model=detection_model, device_name="CPU") detection_input_layer = detection_compiled_model.input(0) # Load an Image # image_file can point to a URL or local image image_file = "https://github.com/openvinotoolkit/openvino_notebooks/raw/main/notebooks/004-hello-detection/data/intel_rnb.jpg" image = load_image(image_file) # N,C,H,W = batch size, number of channels, height, width N, C, H, W = detection_input_layer.shape # Resize image to meet network expected input sizes resized_image = cv2.resize(image, (W, H)) # Reshape to network input shape input_image = np.expand_dims(resized_image.transpose(2, 0, 1), 0) plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)); # Do Inference output_key = detection_compiled_model.output("boxes") boxes = detection_compiled_model([input_image])[output_key] # Remove zero only boxes boxes = boxes[~np.all(boxes == 0, axis=1)] # Get Detection Results def multiply_by_ratio(ratio_x, ratio_y, box): return [ max(shape * ratio_y, 10) if idx % 2 else shape * ratio_x for idx, shape in enumerate(box[:-1]) ] def run_preprocesing_on_crop(crop, net_shape): temp_img = cv2.resize(crop, net_shape) temp_img = temp_img.reshape((1,) * 2 + temp_img.shape) return temp_img def convert_result_to_image(bgr_image, resized_image, boxes, threshold=0.3, conf_labels=True): # Define colors for boxes and descriptions colors = {"red": (255, 0, 0), "green": (0, 255, 0), "white": (255, 255, 255)} # Fetch image shapes to calculate ratio (real_y, real_x), (resized_y, resized_x) = image.shape[:2], resized_image.shape[:2] ratio_x, ratio_y = real_x / resized_x, real_y / resized_y # Convert base image from bgr to rgb format rgb_image = cv2.cvtColor(bgr_image, cv2.COLOR_BGR2RGB) # Iterate through non-zero boxes for box, annotation in boxes: # Pick confidence factor from last place in array conf = box[-1] if conf > threshold: # Convert float to int and multiply position of each box by x and y ratio (x_min, y_min, x_max, y_max) = map(int, multiply_by_ratio(ratio_x, ratio_y, box)) # Draw box based on position, parameters in rectangle function are: image, start_point, end_point, color, thickness cv2.rectangle(rgb_image, (x_min, y_min), (x_max, y_max), colors["green"], 3) # Add text to image based on position and confidence, parameters in putText function are: image, text, bottomleft_corner_textfield, font, font_scale, color, thickness, line_type if conf_labels: # Create background box based on annotation length (text_w, text_h), _ = cv2.getTextSize( f"{annotation}", cv2.FONT_HERSHEY_TRIPLEX, 0.8, 1 ) image_copy = rgb_image.copy() cv2.rectangle( image_copy, (x_min, y_min - text_h - 10), (x_min + text_w, y_min - 10), colors["white"], -1, ) # Add weighted image copy with white boxes under text cv2.addWeighted(image_copy, 0.4, rgb_image, 0.6, 0, rgb_image) cv2.putText( rgb_image, f"{annotation}", (x_min, y_min - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.8, colors["red"], 1, cv2.LINE_AA, ) return rgb_image # Load Text Recognition Model recognition_model = ie.read_model( model=recognition_model_path, weights=recognition_model_path.with_suffix(".bin") ) recognition_compiled_model = ie.compile_model(model=recognition_model, device_name="CPU") recognition_output_layer = recognition_compiled_model.output(0) recognition_input_layer = recognition_compiled_model.input(0) # Get height and width of input layer _, _, H, W = recognition_input_layer.shape # Do Inference # Calculate scale for image resizing (real_y, real_x), (resized_y, resized_x) = image.shape[:2], resized_image.shape[:2] ratio_x, ratio_y = real_x / resized_x, real_y / resized_y # Convert image to grayscale for text recognition model grayscale_image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) # Get dictionary to encode output, based on model documentation letters = "~0123456789abcdefghijklmnopqrstuvwxyz" # Prepare empty list for annotations annotations = list() cropped_images = list() # fig, ax = plt.subplots(len(boxes), 1, figsize=(5,15), sharex=True, sharey=True) # For each crop, based on boxes given by detection model we want to get annotations for i, crop in enumerate(boxes): # Get coordinates on corners of crop (x_min, y_min, x_max, y_max) = map(int, multiply_by_ratio(ratio_x, ratio_y, crop)) image_crop = run_preprocesing_on_crop(grayscale_image[y_min:y_max, x_min:x_max], (W, H)) # Run inference with recognition model result = recognition_compiled_model([image_crop])[recognition_output_layer] # Squeeze output to remove unnececery dimension recognition_results_test = np.squeeze(result) # Read annotation based on probabilities from output layer annotation = list() for letter in recognition_results_test: parsed_letter = letters[letter.argmax()] # Returning 0 index from argmax signalises end of string if parsed_letter == letters[0]: break annotation.append(parsed_letter) annotations.append("".join(annotation)) cropped_image = Image.fromarray(image[y_min:y_max, x_min:x_max]) cropped_images.append(cropped_image) boxes_with_annotations = list(zip(boxes, annotations)) # Show Detected Text Boxes and OCR Results for the Image plt.figure(figsize=(12, 12)) plt.imshow(convert_result_to_image(image, resized_image, boxes_with_annotations, conf_labels=True)); # Show the OCR Result per Bounding Box for cropped_image, annotation in zip(cropped_images, annotations): display(cropped_image, Markdown("".join(annotation))) # Print Annotations in Plain Text Format [ annotation for _, annotation in sorted(zip(boxes, annotations), key=lambda x: x[0][0] ** 2 + x[0][1] ** 2) ]
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #question-answering #bert
213-question-answering: Interactive Question Answering with OpenVINO# Imports import operator import time from urllib import parse import numpy as np from openvino.runtime import Core import html_reader as reader import tokens_bert as tokens # Download the model # directory where model will be downloaded base_model_dir = "model" # desired precision precision = "FP16-INT8" # model name as named in Open Model Zoo model_name = "bert-small-uncased-whole-word-masking-squad-int8-0002" model_path = f"model/intel/{model_name}/{precision}/{model_name}.xml" model_weights_path = f"model/intel/{model_name}/{precision}/{model_name}.bin" download_command = f"omz_downloader " \ f"--name {model_name} " \ f"--precision {precision} " \ f"--output_dir {base_model_dir} " \ f"--cache_dir {base_model_dir}" ! $download_command # Load the model # initialize inference engine core = Core() # read the network and corresponding weights from file model = core.read_model(model=model_path, weights=model_weights_path) # load the model on the CPU (you can use GPU as well) compiled_model = core.compile_model(model=model, device_name="CPU") # get input and output names of nodes input_keys = list(compiled_model.inputs) output_keys = list(compiled_model.outputs) # get network input size input_size = compiled_model.input(0).shape[1] # Processing # path to vocabulary file vocab_file_path = "data/vocab.txt" # create dictionary with words and their indices vocab = tokens.load_vocab_file(vocab_file_path) # define special tokens cls_token = vocab["[CLS]"] pad_token = vocab["[PAD]"] sep_token = vocab["[SEP]"] # function to load text from given urls def load_context(sources): input_urls = [] paragraphs = [] for source in sources: result = parse.urlparse(source) if all([result.scheme, result.netloc]): input_urls.append(source) else: paragraphs.append(source) paragraphs.extend(reader.get_paragraphs(input_urls)) # produce one big context string return "\n".join(paragraphs) # Preprocessing # generator of a sequence of inputs def prepare_input(question_tokens, context_tokens): # length of question in tokens question_len = len(question_tokens) # context part size context_len = input_size - question_len - 3 if context_len < 16: raise RuntimeError("Question is too long in comparison to input size. No space for context") # take parts of context with overlapping by 0.5 for start in range(0, max(1, len(context_tokens) - context_len), context_len // 2): # part of context part_context_tokens = context_tokens[start:start + context_len] # input: question and context separated by special tokens input_ids = [cls_token] + question_tokens + [sep_token] + part_context_tokens + [sep_token] # 1 for any index if there is no padding token, 0 otherwise attention_mask = [1] * len(input_ids) # 0 for question tokens, 1 for context part token_type_ids = [0] * (question_len + 2) + [1] * (len(part_context_tokens) + 1) # add padding at the end (input_ids, attention_mask, token_type_ids), pad_number = pad(input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids) # create input to feed the model input_dict = { "input_ids": np.array([input_ids], dtype=np.int32), "attention_mask": np.array([attention_mask], dtype=np.int32), "token_type_ids": np.array([token_type_ids], dtype=np.int32), } # some models require additional position_ids if "position_ids" in [i_key.any_name for i_key in input_keys]: position_ids = np.arange(len(input_ids)) input_dict["position_ids"] = np.array([position_ids], dtype=np.int32) yield input_dict, pad_number, start # function to add padding def pad(input_ids, attention_mask, token_type_ids): # how many padding tokens diff_input_size = input_size - len(input_ids) if diff_input_size > 0: # add padding to all inputs input_ids = input_ids + [pad_token] * diff_input_size attention_mask = attention_mask + [0] * diff_input_size token_type_ids = token_type_ids + [0] * diff_input_size return (input_ids, attention_mask, token_type_ids), diff_input_size # Postprocessing # based on https://github.com/openvinotoolkit/open_model_zoo/blob/bf03f505a650bafe8da03d2747a8b55c5cb2ef16/demos/common/python/openvino/model_zoo/model_api/models/bert.py#L163 def postprocess(output_start, output_end, question_tokens, context_tokens_start_end, padding, start_idx): def get_score(logits): out = np.exp(logits) return out / out.sum(axis=-1) # get start-end scores for context score_start = get_score(output_start) score_end = get_score(output_end) # index of first context token in tensor context_start_idx = len(question_tokens) + 2 # index of last+1 context token in tensor context_end_idx = input_size - padding - 1 # find product of all start-end combinations to find the best one max_score, max_start, max_end = find_best_answer_window(start_score=score_start, end_score=score_end, context_start_idx=context_start_idx, context_end_idx=context_end_idx) # convert to context text start-end index max_start = context_tokens_start_end[max_start + start_idx][0] max_end = context_tokens_start_end[max_end + start_idx][1] return max_score, max_start, max_end # based on https://github.com/openvinotoolkit/open_model_zoo/blob/bf03f505a650bafe8da03d2747a8b55c5cb2ef16/demos/common/python/openvino/model_zoo/model_api/models/bert.py#L188 def find_best_answer_window(start_score, end_score, context_start_idx, context_end_idx): context_len = context_end_idx - context_start_idx score_mat = np.matmul( start_score[context_start_idx:context_end_idx].reshape((context_len, 1)), end_score[context_start_idx:context_end_idx].reshape((1, context_len)), ) # reset candidates with end before start score_mat = np.triu(score_mat) # reset long candidates (>16 words) score_mat = np.tril(score_mat, 16) # find the best start-end pair max_s, max_e = divmod(score_mat.flatten().argmax(), score_mat.shape[1]) max_score = score_mat[max_s, max_e] return max_score, max_s, max_e def get_best_answer(question, context): # convert context string to tokens context_tokens, context_tokens_start_end = tokens.text_to_tokens(text=context.lower(), vocab=vocab) # convert question string to tokens question_tokens, _ = tokens.text_to_tokens(text=question.lower(), vocab=vocab) results = [] # iterate through different parts of context for network_input, padding, start_idx in prepare_input(question_tokens=question_tokens, context_tokens=context_tokens): # get output layers output_start_key = compiled_model.output("output_s") output_end_key = compiled_model.output("output_e") # openvino inference result = compiled_model(network_input) # postprocess the result getting the score and context range for the answer score_start_end = postprocess(output_start=result[output_start_key][0], output_end=result[output_end_key][0], question_tokens=question_tokens, context_tokens_start_end=context_tokens_start_end, padding=padding, start_idx=start_idx) results.append(score_start_end) # find the highest score answer = max(results, key=operator.itemgetter(0)) # return the part of the context, which is already an answer return context[answer[1]:answer[2]], answer[0] # Main Processing Function def run_question_answering(sources): print(f"Context: {sources}", flush=True) context = load_context(sources) if len(context) == 0: print("Error: Empty context or outside paragraphs") return while True: question = input() # if no question - break if question == "": break # measure processing time start_time = time.perf_counter() answer, score = get_best_answer(question=question, context=context) end_time = time.perf_counter() print(f"Question: {question}") print(f"Answer: {answer}") print(f"Score: {score:.2f}") print(f"Time: {end_time - start_time:.2f}s") # Run on local paragraphs sources = ["Computational complexity theory is a branch of the theory of computation in theoretical computer " "science that focuses on classifying computational problems according to their inherent difficulty, " "and relating those classes to each other. A computational problem is understood to be a task that " "is in principle amenable to being solved by a computer, which is equivalent to stating that the " "problem may be solved by mechanical application of mathematical steps, such as an algorithm."] run_question_answering(sources) # Run on websites sources = ["https://en.wikipedia.org/wiki/OpenVINO"] run_question_answering(sources)
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp ##speechtotext
211-speech-to-text: Speech to Text with OpenVINO# Imports from pathlib import Path import IPython.display as ipd import librosa import librosa.display import matplotlib.pyplot as plt import numpy as np import scipy from openvino.runtime import Core # Settings model_folder = "model" download_folder = "output" data_folder = "data" precision = "FP16" model_name = "quartznet-15x5-en" # Download Model # Check if model is already downloaded in download directory path_to_model_weights = Path(f'{download_folder}/public/{model_name}/models') downloaded_model_file = list(path_to_model_weights.glob('*.pth')) if not path_to_model_weights.is_dir() or len(downloaded_model_file) == 0: download_command = f"omz_downloader --name {model_name} --output_dir {download_folder} --precision {precision}" ! $download_command # Convert Model # Check if model is already converted in model directory path_to_converted_weights = Path(f'{model_folder}/public/{model_name}/{precision}/{model_name}.bin') if not path_to_converted_weights.is_file(): convert_command = f"omz_converter --name {model_name} --precisions {precision} --download_dir {download_folder} --output_dir {model_folder}" ! $convert_command # Defining constants audio_file_name = "edge_to_cloud.ogg" alphabet = " abcdefghijklmnopqrstuvwxyz'~" # Load Audio File audio, sampling_rate = librosa.load(path=f'{data_folder}/{audio_file_name}', sr=16000) ipd.Audio(audio, rate=sampling_rate) # Visualise Audio File plt.figure() librosa.display.waveplot(y=audio, sr=sampling_rate, max_points=50000.0, x_axis='time', offset=0.0, max_sr=1000); plt.show() specto_audio = librosa.stft(audio) specto_audio = librosa.amplitude_to_db(np.abs(specto_audio), ref=np.max) print(specto_audio.shape) librosa.display.specshow(specto_audio, sr=sampling_rate, x_axis='time', y_axis='hz'); # Change Type of Data if max(np.abs(audio)) <= 1: audio = (audio * (2**15 - 1)) audio = audio.astype(np.int16) # Convert Audio to Mel Spectrum def audio_to_mel(audio, sampling_rate): assert sampling_rate == 16000, "Only 16 KHz audio supported" preemph = 0.97 preemphased = np.concatenate([audio[:1], audio[1:] - preemph * audio[:-1].astype(np.float32)]) # Calculate window length win_length = round(sampling_rate * 0.02) # Based on previously calculated window length run short-time Fourier transform spec = np.abs(librosa.core.spectrum.stft(preemphased, n_fft=512, hop_length=round(sampling_rate * 0.01), win_length=win_length, center=True, window=scipy.signal.windows.hann(win_length), pad_mode='reflect')) # Create mel filter-bank, produce transformation matrix to project current values onto Mel-frequency bins mel_basis = librosa.filters.mel(sampling_rate, 512, n_mels=64, fmin=0.0, fmax=8000.0, htk=False) return mel_basis, spec def mel_to_input(mel_basis, spec, padding=16): # Convert to logarithmic scale log_melspectrum = np.log(np.dot(mel_basis, np.power(spec, 2)) + 2 ** -24) # Normalize output normalized = (log_melspectrum - log_melspectrum.mean(1)[:, None]) / (log_melspectrum.std(1)[:, None] + 1e-5) # Calculate padding remainder = normalized.shape[1] % padding if remainder != 0: return np.pad(normalized, ((0, 0), (0, padding - remainder)))[None] return normalized[None] # Run Conversion from Audio to Mel Format mel_basis, spec = audio_to_mel(audio=audio.flatten(), sampling_rate=sampling_rate) # Visualise Mel Spectogram librosa.display.specshow(data=spec, sr=sampling_rate, x_axis='time', y_axis='log'); plt.show(); librosa.display.specshow(data=mel_basis, sr=sampling_rate, x_axis='linear'); plt.ylabel('Mel filter'); # Adjust Mel scale to Input audio = mel_to_input(mel_basis=mel_basis, spec=spec) # Load Model ie = Core() model = ie.read_model( model=f"{model_folder}/public/{model_name}/{precision}/{model_name}.xml" ) model_input_layer = model.input(0) shape = model_input_layer.partial_shape shape[2] = -1 model.reshape({model_input_layer: shape}) compiled_model = ie.compile_model(model=model, device_name="CPU") # Do Inference output_layer_ir = compiled_model.output(0) character_probabilities = compiled_model([audio])[output_layer_ir] # Read Output # Remove unnececery dimension character_probabilities = np.squeeze(character_probabilities) # Run argmax to pick most possible symbols character_probabilities = np.argmax(character_probabilities, axis=1) # Implementation of Decoding def ctc_greedy_decode(predictions): previous_letter_id = blank_id = len(alphabet) - 1 transcription = list() for letter_index in predictions: if previous_letter_id != letter_index != blank_id: transcription.append(alphabet[letter_index]) previous_letter_id = letter_index return ''.join(transcription) # Run Decoding and Print Output transcription = ctc_greedy_decode(character_probabilities) print(transcription)
#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #action-recognition
403-action-recognition-webcam: Human Action Recognition with OpenVINO# Imports import collections import os import sys import time from typing import Tuple, List import cv2 import numpy as np from IPython import display from openvino.runtime import Core from openvino.runtime.ie_api import CompiledModel sys.path.append("../utils") import notebook_utils as utils # Download the models # Directory where model will be downloaded base_model_dir = "model" # Model name as named in Open Model Zoo model_name = "action-recognition-0001" # Selected precision (FP32, FP16, FP16-INT8) precision = "FP16" model_path_decoder = ( f"model/intel/{model_name}/{model_name}-decoder/{precision}/{model_name}-decoder.xml" ) model_path_encoder = ( f"model/intel/{model_name}/{model_name}-encoder/{precision}/{model_name}-encoder.xml" ) if not os.path.exists(model_path_decoder) or not os.path.exists(model_path_encoder): download_command = f"omz_downloader " \ f"--name {model_name} " \ f"--precision {precision} " \ f"--output_dir {base_model_dir}" ! $download_command # Load your labels labels = "data/kinetics.txt" with open(labels) as f: labels = [line.strip() for line in f] print(labels[0:9], np.shape(labels)) # Model Initialization function # Initialize inference engine ie_core = Core() def model_init(model_path: str) -> Tuple: """ Read the network and weights from file, load the model on the CPU and get input and output names of nodes :param: model: model architecture path *.xml :retuns: compiled_model: Compiled model input_key: Input node for model output_key: Output node for model """ # Read the network and corresponding weights from file model = ie_core.read_model(model=model_path) # compile the model for the CPU (you can use GPU or MYRIAD as well) compiled_model = ie_core.compile_model(model=model, device_name="CPU") # Get input and output names of nodes input_keys = compiled_model.input(0) output_keys = compiled_model.output(0) return input_keys, output_keys, compiled_model # Initialization for Encoder and Decoder # Encoder initialization input_key_en, output_keys_en, compiled_model_en = model_init(model_path_encoder) # Decoder initialization input_key_de, output_keys_de, compiled_model_de = model_init(model_path_decoder) # Get input size - Encoder height_en, width_en = list(input_key_en.shape)[2:] # Get input size - Decoder frames2decode = list(input_key_de.shape)[0:][1] # Helper functions def center_crop(frame: np.ndarray) -> np.ndarray: """ Center crop squared the original frame to standardize the input image to the encoder model :param frame: input frame :returns: center-crop-squared frame """ img_h, img_w, _ = frame.shape min_dim = min(img_h, img_w) start_x = int((img_w - min_dim) / 2.0) start_y = int((img_h - min_dim) / 2.0) roi = [start_y, (start_y + min_dim), start_x, (start_x + min_dim)] return frame[start_y : (start_y + min_dim), start_x : (start_x + min_dim), ...], roi def adaptive_resize(frame: np.ndarray, size: int) -> np.ndarray: """ The frame going to be resized to have a height of size or a width of size :param frame: input frame :param size: input size to encoder model :returns: resized frame, np.array type """ h, w, _ = frame.shape scale = size / min(h, w) w_scaled, h_scaled = int(w * scale), int(h * scale) if w_scaled == w and h_scaled == h: return frame return cv2.resize(frame, (w_scaled, h_scaled)) def decode_output(probs: np.ndarray, labels: np.ndarray, top_k: int = 3) -> np.ndarray: """ Decodes top probabilities into corresponding label names :param probs: confidence vector for 400 actions :param labels: list of actions :param top_k: The k most probable positions in the list of labels :returns: decoded_labels: The k most probable actions from the labels list decoded_top_probs: confidence for the k most probable actions """ top_ind = np.argsort(-1 * probs)[:top_k] out_label = np.array(labels)[top_ind.astype(int)] decoded_labels = [out_label[0][0], out_label[0][1], out_label[0][2]] top_probs = np.array(probs)[0][top_ind.astype(int)] decoded_top_probs = [top_probs[0][0], top_probs[0][1], top_probs[0][2]] return decoded_labels, decoded_top_probs def rec_frame_display(frame: np.ndarray, roi) -> np.ndarray: """ Draw a rec frame over actual frame :param frame: input frame :param roi: Region of interest, image section processed by the Encoder :returns: frame with drawed shape """ cv2.line(frame, (roi[2] + 3, roi[0] + 3), (roi[2] + 3, roi[0] + 100), (0, 200, 0), 2) cv2.line(frame, (roi[2] + 3, roi[0] + 3), (roi[2] + 100, roi[0] + 3), (0, 200, 0), 2) cv2.line(frame, (roi[3] - 3, roi[1] - 3), (roi[3] - 3, roi[1] - 100), (0, 200, 0), 2) cv2.line(frame, (roi[3] - 3, roi[1] - 3), (roi[3] - 100, roi[1] - 3), (0, 200, 0), 2) cv2.line(frame, (roi[3] - 3, roi[0] + 3), (roi[3] - 3, roi[0] + 100), (0, 200, 0), 2) cv2.line(frame, (roi[3] - 3, roi[0] + 3), (roi[3] - 100, roi[0] + 3), (0, 200, 0), 2) cv2.line(frame, (roi[2] + 3, roi[1] - 3), (roi[2] + 3, roi[1] - 100), (0, 200, 0), 2) cv2.line(frame, (roi[2] + 3, roi[1] - 3), (roi[2] + 100, roi[1] - 3), (0, 200, 0), 2) # Write ROI over actual frame FONT_STYLE = cv2.FONT_HERSHEY_SIMPLEX org = (roi[2] + 3, roi[1] - 3) org2 = (roi[2] + 2, roi[1] - 2) FONT_SIZE = 0.5 FONT_COLOR = (0, 200, 0) FONT_COLOR2 = (0, 0, 0) cv2.putText(frame, "ROI", org2, FONT_STYLE, FONT_SIZE, FONT_COLOR2) cv2.putText(frame, "ROI", org, FONT_STYLE, FONT_SIZE, FONT_COLOR) return frame def display_text_fnc(frame: np.ndarray, display_text: str, index: int): """ Include text on the analized frame :param frame: input frame :param display_text: text to add on the frame :param index: index line dor adding text """ # Configuration for displaying images with text FONT_COLOR = (255, 255, 255) FONT_COLOR2 = (0, 0, 0) FONT_STYLE = cv2.FONT_HERSHEY_DUPLEX FONT_SIZE = 0.7 TEXT_VERTICAL_INTERVAL = 25 TEXT_LEFT_MARGIN = 15 # ROI over actual frame (processed, roi) = center_crop(frame) # Draw a ROI over actual frame frame = rec_frame_display(frame, roi) # Put text over actual frame text_loc = (TEXT_LEFT_MARGIN, TEXT_VERTICAL_INTERVAL * (index + 1)) text_loc2 = (TEXT_LEFT_MARGIN + 1, TEXT_VERTICAL_INTERVAL * (index + 1) + 1) cv2.putText(frame, display_text, text_loc2, FONT_STYLE, FONT_SIZE, FONT_COLOR2) cv2.putText(frame, display_text, text_loc, FONT_STYLE, FONT_SIZE, FONT_COLOR) # AI Functions def preprocessing(frame: np.ndarray, size: int) -> np.ndarray: """ Preparing frame before Encoder. The image should be scaled to its shortest dimension at "size" and cropped, centered, and squared so that both width and height have lengths "size". Frame must be transposed from Height-Width-Channels (HWC) to Channels-Height-Width (CHW). :param frame: input frame :param size: input size to encoder model :returns: resized and cropped frame """ # Adaptative resize preprocessed = adaptive_resize(frame, size) # Center_crop (preprocessed, roi) = center_crop(preprocessed) # Transpose frame HWC -> CHW preprocessed = preprocessed.transpose((2, 0, 1))[None,] # HWC -> CHW return preprocessed, roi def encoder( preprocessed: np.ndarray, compiled_model: CompiledModel ) -> List: """ Encoder Inference per frame. This function calls the network previously configured for the encoder model (compiled_model), extracts the data from the output node, and appends it in an array to be used by the decoder. :param: preprocessed: preprocessing frame :param: compiled_model: Encoder model network :returns: encoder_output: embedding layer that is appended with each arriving frame """ output_key_en = compiled_model.output(0) # Get results on action-recognition-0001-encoder model infer_result_encoder = compiled_model([preprocessed])[output_key_en] return infer_result_encoder def decoder(encoder_output: List, compiled_model_de: CompiledModel) -> List: """ Decoder inference per set of frames. This function concatenates the embedding layer froms the encoder output, transpose the array to match with the decoder input size. Calls the network previously configured for the decoder model (compiled_model_de), extracts the logits and normalize those to get confidence values along specified axis. Decodes top probabilities into corresponding label names :param: encoder_output: embedding layer for 16 frames :param: compiled_model_de: Decoder model network :returns: decoded_labels: The k most probable actions from the labels list decoded_top_probs: confidence for the k most probable actions """ # Concatenate sample_duration frames in just one array decoder_input = np.concatenate(encoder_output, axis=0) # Organize input shape vector to the Decoder (shape: [1x16x512]] decoder_input = decoder_input.transpose((2, 0, 1, 3)) decoder_input = np.squeeze(decoder_input, axis=3) output_key_de = compiled_model_de.output(0) # Get results on action-recognition-0001-decoder model result_de = compiled_model_de([decoder_input])[output_key_de] # Normalize logits to get confidence values along specified axis probs = softmax(result_de - np.max(result_de)) # Decodes top probabilities into corresponding label names decoded_labels, decoded_top_probs = decode_output(probs, labels, top_k=3) return decoded_labels, decoded_top_probs def softmax(x: np.ndarray) -> np.ndarray: """ Normalizes logits to get confidence values along specified axis x: np.array, axis=None """ exp = np.exp(x) return exp / np.sum(exp, axis=None) # Main Processing Function def run_action_recognition( source: str = "0", flip: bool = True, use_popup: bool = False, compiled_model_en: CompiledModel = compiled_model_en, compiled_model_de: CompiledModel = compiled_model_de, skip_first_frames: int = 0, ): """ Use the "source" webcam or video file to run the complete pipeline for action-recognition problem 1. Create a video player to play with target fps 2. Prepare a set of frames to be encoded-decoded 3. Preprocess frame before Encoder 4. Encoder Inference per frame 5. Decoder inference per set of frames 6. Visualize the results :param: source: webcam "0" or video path :param: flip: to be used by VideoPlayer function for flipping capture image :param: use_popup: False for showing encoded frames over this notebook, True for creating a popup window. :param: skip_first_frames: Number of frames to skip at the beginning of the video. :returns: display video over the notebook or in a popup window """ size = height_en # Endoder input size - From Cell 5_9 sample_duration = frames2decode # Decoder input size - From Cell 5_7 # Select frames per second of your source fps = 30 player = None try: # Create a video player player = utils.VideoPlayer(source, flip=flip, fps=fps, skip_first_frames=skip_first_frames) # Start capturing player.start() if use_popup: title = "Press ESC to Exit" cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE) processing_times = collections.deque() processing_time = 0 encoder_output = [] decoded_labels = [0, 0, 0] decoded_top_probs = [0, 0, 0] counter = 0 # Create a text template to show inference results over video text_inference_template = "Infer Time:{Time:.1f}ms,{fps:.1f}FPS" text_template = "{label},{conf:.2f}%" while True: counter = counter + 1 # read a frame from the video stream frame = player.next() if frame is None: print("Source ended") break scale = 1280 / max(frame.shape) # Adaptative resize for visualization if scale < 1: frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) # Select one frame every two for processing through the encoder. # After 16 frames are processed, the decoder will find the action, # and the label will be printed over the frames. if counter % 2 == 0: # Preprocess frame before Encoder (preprocessed, _) = preprocessing(frame, size) # Measure processing time start_time = time.time() # Encoder Inference per frame encoder_output.append(encoder(preprocessed, compiled_model_en)) # Decoder inference per set of frames # Wait for sample duration to work with decoder model if len(encoder_output) == sample_duration: decoded_labels, decoded_top_probs = decoder(encoder_output, compiled_model_de) encoder_output = [] # Inference has finished ... Let's to display results stop_time = time.time() # Calculate processing time processing_times.append(stop_time - start_time) # Use processing times from last 200 frames if len(processing_times) > 200: processing_times.popleft() # Mean processing time [ms] processing_time = np.mean(processing_times) * 1000 fps = 1000 / processing_time # Visualize the results for i in range(0, 3): display_text = text_template.format( label=decoded_labels[i], conf=decoded_top_probs[i] * 100, ) display_text_fnc(frame, display_text, i) display_text = text_inference_template.format(Time=processing_time, fps=fps) display_text_fnc(frame, display_text, 3) # Use this workaround you experience flickering if use_popup: cv2.imshow(title, frame) key = cv2.waitKey(1) # escape = 27 if key == 27: break else: # Encode numpy array to jpg _, encoded_img = cv2.imencode(".jpg", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90]) # Create IPython image i = display.Image(data=encoded_img) # Display the image in this notebook display.clear_output(wait=True) display.display(i) # ctrl-c except KeyboardInterrupt: print("Interrupted") # Any different error except RuntimeError as e: print(e) finally: if player is not None: # stop capturing player.stop() if use_popup: cv2.destroyAllWindows() # Run Action Recognition on a Video File video_file = "https://archive.org/serve/ISSVideoResourceLifeOnStation720p/ISS%20Video%20Resource_LifeOnStation_720p.mp4" run_action_recognition(source=video_file, flip=False, use_popup=False, skip_first_frames=600) # Run Action Recognition using your webcam run_action_recognition(source=0, flip=False, use_popup=False, skip_first_frames=0)
#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #object-detection #pose-estimation
402-pose-estimation-webcam: Live Human Pose Estimation with OpenVINO# Imports import collections import os import sys import time import cv2 import numpy as np from IPython import display from numpy.lib.stride_tricks import as_strided from openvino.runtime import Core from decoder import OpenPoseDecoder sys.path.append("../utils") import notebook_utils as utils # Download the model # directory where model will be downloaded base_model_dir = "model" # model name as named in Open Model Zoo model_name = "human-pose-estimation-0001" # selected precision (FP32, FP16, FP16-INT8) precision = "FP16-INT8" model_path = f"model/intel/{model_name}/{precision}/{model_name}.xml" model_weights_path = f"model/intel/{model_name}/{precision}/{model_name}.bin" if not os.path.exists(model_path): download_command = f"omz_downloader " \ f"--name {model_name} " \ f"--precision {precision} " \ f"--output_dir {base_model_dir}" ! $download_command # Load the model # initialize inference engine ie_core = Core() # read the network and corresponding weights from file model = ie_core.read_model(model=model_path, weights=model_weights_path) # load the model on the CPU (you can use GPU or MYRIAD as well) compiled_model = ie_core.compile_model(model=model, device_name="CPU") # get input and output names of nodes input_layer = compiled_model.input(0) output_layers = list(compiled_model.outputs) # get input size height, width = list(input_layer.shape)[2:] # Processing OpenPoseDecoder decoder = OpenPoseDecoder() # Process Results # 2d pooling in numpy (from: htt11ps://stackoverflow.com/a/54966908/1624463) def pool2d(A, kernel_size, stride, padding, pool_mode="max"): """ 2D Pooling Parameters: A: input 2D array kernel_size: int, the size of the window stride: int, the stride of the window padding: int, implicit zero paddings on both sides of the input pool_mode: string, 'max' or 'avg' """ # Padding A = np.pad(A, padding, mode="constant") # Window view of A output_shape = ( (A.shape[0] - kernel_size) // stride + 1, (A.shape[1] - kernel_size) // stride + 1, ) kernel_size = (kernel_size, kernel_size) A_w = as_strided( A, shape=output_shape + kernel_size, strides=(stride * A.strides[0], stride * A.strides[1]) + A.strides ) A_w = A_w.reshape(-1, *kernel_size) # Return the result of pooling if pool_mode == "max": return A_w.max(axis=(1, 2)).reshape(output_shape) elif pool_mode == "avg": return A_w.mean(axis=(1, 2)).reshape(output_shape) # non maximum suppression def heatmap_nms(heatmaps, pooled_heatmaps): return heatmaps * (heatmaps == pooled_heatmaps) # get poses from results def process_results(img, pafs, heatmaps): # this processing comes from # https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/models/open_pose.py pooled_heatmaps = np.array( [[pool2d(h, kernel_size=3, stride=1, padding=1, pool_mode="max") for h in heatmaps[0]]] ) nms_heatmaps = heatmap_nms(heatmaps, pooled_heatmaps) # decode poses poses, scores = decoder(heatmaps, nms_heatmaps, pafs) output_shape = list(compiled_model.output(index=0).partial_shape) output_scale = img.shape[1] / output_shape[3].get_length(), img.shape[0] / output_shape[2].get_length() # multiply coordinates by scaling factor poses[:, :, :2] *= output_scale return poses, scores # Draw Pose Overlays colors = ((255, 0, 0), (255, 0, 255), (170, 0, 255), (255, 0, 85), (255, 0, 170), (85, 255, 0), (255, 170, 0), (0, 255, 0), (255, 255, 0), (0, 255, 85), (170, 255, 0), (0, 85, 255), (0, 255, 170), (0, 0, 255), (0, 255, 255), (85, 0, 255), (0, 170, 255)) default_skeleton = ((15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11), (6, 12), (5, 6), (5, 7), (6, 8), (7, 9), (8, 10), (1, 2), (0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6)) def draw_poses(img, poses, point_score_threshold, skeleton=default_skeleton): if poses.size == 0: return img img_limbs = np.copy(img) for pose in poses: points = pose[:, :2].astype(np.int32) points_scores = pose[:, 2] # Draw joints. for i, (p, v) in enumerate(zip(points, points_scores)): if v > point_score_threshold: cv2.circle(img, tuple(p), 1, colors[i], 2) # Draw limbs. for i, j in skeleton: if points_scores[i] > point_score_threshold and points_scores[j] > point_score_threshold: cv2.line(img_limbs, tuple(points[i]), tuple(points[j]), color=colors[j], thickness=4) cv2.addWeighted(img, 0.4, img_limbs, 0.6, 0, dst=img) return img # Main Processing Function # main processing function to run pose estimation def run_pose_estimation(source=0, flip=False, use_popup=False, skip_first_frames=0): pafs_output_key = compiled_model.output("Mconv7_stage2_L1") heatmaps_output_key = compiled_model.output("Mconv7_stage2_L2") player = None try: # create video player to play with target fps player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_first_frames) # start capturing player.start() if use_popup: title = "Press ESC to Exit" cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE) processing_times = collections.deque() while True: # grab the frame frame = player.next() if frame is None: print("Source ended") break # if frame larger than full HD, reduce size to improve the performance scale = 1280 / max(frame.shape) if scale < 1: frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA) # resize image and change dims to fit neural network input # (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/human-pose-estimation-0001) input_img = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA) # create batch of images (size = 1) input_img = input_img.transpose((2,0,1))[np.newaxis, ...] # measure processing time start_time = time.time() # get results results = compiled_model([input_img]) stop_time = time.time() pafs = results[pafs_output_key] heatmaps = results[heatmaps_output_key] # get poses from network results poses, scores = process_results(frame, pafs, heatmaps) # draw poses on a frame frame = draw_poses(frame, poses, 0.1) processing_times.append(stop_time - start_time) # use processing times from last 200 frames if len(processing_times) > 200: processing_times.popleft() _, f_width = frame.shape[:2] # mean processing time [ms] processing_time = np.mean(processing_times) * 1000 fps = 1000 / processing_time cv2.putText(frame, f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)", (20, 40), cv2.FONT_HERSHEY_COMPLEX, f_width / 1000, (0, 0, 255), 1, cv2.LINE_AA) # use this workaround if there is flickering if use_popup: cv2.imshow(title, frame) key = cv2.waitKey(1) # escape = 27 if key == 27: break else: # encode numpy array to jpg _, encoded_img = cv2.imencode(".jpg", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90]) # create IPython image i = display.Image(data=encoded_img) # display the image in this notebook display.clear_output(wait=True) display.display(i) # ctrl-c except KeyboardInterrupt: print("Interrupted") # any different error except RuntimeError as e: print(e) finally: if player is not None: # stop capturing player.stop() if use_popup: cv2.destroyAllWindows() # Run Live Pose Estimation run_pose_estimation(source=0, flip=True, use_popup=False) # Run Pose Estimation on a Video File video_file = "https://github.com/intel-iot-devkit/sample-videos/blob/master/store-aisle-detection.mp4?raw=true" run_pose_estimation(video_file, flip=False, use_popup=False, skip_first_frames=500)
#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #object-detection
401-object-detection-webcam: Live Object Detection with OpenVINO# Imports import collections import os import sys import time import cv2 import numpy as np from IPython import display from openvino.runtime import Core sys.path.append("../utils") import notebook_utils as utils # Download the Model # directory where model will be downloaded base_model_dir = "model" # model name as named in Open Model Zoo model_name = "ssdlite_mobilenet_v2" download_command = f"omz_downloader " \ f"--name {model_name} " \ f"--output_dir {base_model_dir} " \ f"--cache_dir {base_model_dir}" ! $download_command # Convert the Model precision = "FP16" # output path for the conversion converted_model_path = f"model/public/{model_name}/{precision}/{model_name}.xml" if not os.path.exists(converted_model_path): convert_command = f"omz_converter " \ f"--name {model_name} " \ f"--download_dir {base_model_dir} " \ f"--precisions {precision}" ! $convert_command # Load the Model # initialize inference engine ie_core = Core() # read the network and corresponding weights from file model = ie_core.read_model(model=converted_model_path) # compile the model for the CPU (you can choose manually CPU, GPU, MYRIAD etc.) # or let the engine choose the best available device (AUTO) compiled_model = ie_core.compile_model(model=model, device_name="CPU") # get input and output nodes input_layer = compiled_model.input(0) output_layer = compiled_model.output(0) # get input size height, width = list(input_layer.shape)[1:3] # Process Results # https://tech.amikelive.com/node-718/what-object-categories-labels-are-in-coco-dataset/ classes = [ "background", "person", "bicycle", "car", "motorcycle", "airplane", "bus", "train", "truck", "boat", "traffic light", "fire hydrant", "street sign", "stop sign", "parking meter", "bench", "bird", "cat", "dog", "horse", "sheep", "cow", "elephant", "bear", "zebra", "giraffe", "hat", "backpack", "umbrella", "shoe", "eye glasses", "handbag", "tie", "suitcase", "frisbee", "skis", "snowboard", "sports ball", "kite", "baseball bat", "baseball glove", "skateboard", "surfboard", "tennis racket", "bottle", "plate", "wine glass", "cup", "fork", "knife", "spoon", "bowl", "banana", "apple", "sandwich", "orange", "broccoli", "carrot", "hot dog", "pizza", "donut", "cake", "chair", "couch", "potted plant", "bed", "mirror", "dining table", "window", "desk", "toilet", "door", "tv", "laptop", "mouse", "remote", "keyboard", "cell phone", "microwave", "oven", "toaster", "sink", "refrigerator", "blender", "book", "clock", "vase", "scissors", "teddy bear", "hair drier", "toothbrush", "hair brush" ] # colors for above classes (Rainbow Color Map) colors = cv2.applyColorMap( src=np.arange(0, 255, 255 / len(classes), dtype=np.float32).astype(np.uint8), colormap=cv2.COLORMAP_RAINBOW, ).squeeze() def process_results(frame, results, thresh=0.6): # size of the original frame h, w = frame.shape[:2] # results is a tensor [1, 1, 100, 7] results = results.squeeze() boxes = [] labels = [] scores = [] for _, label, score, xmin, ymin, xmax, ymax in results: # create a box with pixels coordinates from the box with normalized coordinates [0,1] boxes.append( tuple(map(int, (xmin * w, ymin * h, (xmax - xmin) * w, (ymax - ymin) * h))) ) labels.append(int(label)) scores.append(float(score)) # apply non-maximum suppression to get rid of many overlapping entities # see https://paperswithcode.com/method/non-maximum-suppression # this algorithm returns indices of objects to keep indices = cv2.dnn.NMSBoxes( bboxes=boxes, scores=scores, score_threshold=thresh, nms_threshold=0.6 ) # if there are no boxes if len(indices) == 0: return [] # filter detected objects return [(labels[idx], scores[idx], boxes[idx]) for idx in indices.flatten()] def draw_boxes(frame, boxes): for label, score, box in boxes: # choose color for the label color = tuple(map(int, colors[label])) # draw box x2 = box[0] + box[2] y2 = box[1] + box[3] cv2.rectangle(img=frame, pt1=box[:2], pt2=(x2, y2), color=color, thickness=3) # draw label name inside the box cv2.putText( img=frame, text=f"{classes[label]} {score:.2f}", org=(box[0] + 10, box[1] + 30), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=frame.shape[1] / 1000, color=color, thickness=1, lineType=cv2.LINE_AA, ) return frame # Main Processing Function # main processing function to run object detection def run_object_detection(source=0, flip=False, use_popup=False, skip_first_frames=0): player = None try: # create video player to play with target fps player = utils.VideoPlayer( source=source, flip=flip, fps=30, skip_first_frames=skip_first_frames ) # start capturing player.start() if use_popup: title = "Press ESC to Exit" cv2.namedWindow( winname=title, flags=cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE ) processing_times = collections.deque() while True: # grab the frame frame = player.next() if frame is None: print("Source ended") break # if frame larger than full HD, reduce size to improve the performance scale = 1280 / max(frame.shape) if scale < 1: frame = cv2.resize( src=frame, dsize=None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA, ) # resize image and change dims to fit neural network input input_img = cv2.resize( src=frame, dsize=(width, height), interpolation=cv2.INTER_AREA ) # create batch of images (size = 1) input_img = input_img[np.newaxis, ...] # measure processing time start_time = time.time() # get results results = compiled_model([input_img])[output_layer] stop_time = time.time() # get poses from network results boxes = process_results(frame=frame, results=results) # draw boxes on a frame frame = draw_boxes(frame=frame, boxes=boxes) processing_times.append(stop_time - start_time) # use processing times from last 200 frames if len(processing_times) > 200: processing_times.popleft() _, f_width = frame.shape[:2] # mean processing time [ms] processing_time = np.mean(processing_times) * 1000 fps = 1000 / processing_time cv2.putText( img=frame, text=f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)", org=(20, 40), fontFace=cv2.FONT_HERSHEY_COMPLEX, fontScale=f_width / 1000, color=(0, 0, 255), thickness=1, lineType=cv2.LINE_AA, ) # use this workaround if there is flickering if use_popup: cv2.imshow(winname=title, mat=frame) key = cv2.waitKey(1) # escape = 27 if key == 27: break else: # encode numpy array to jpg _, encoded_img = cv2.imencode( ext=".jpg", img=frame, params=[cv2.IMWRITE_JPEG_QUALITY, 100] ) # create IPython image i = display.Image(data=encoded_img) # display the image in this notebook display.clear_output(wait=True) display.display(i) # ctrl-c except KeyboardInterrupt: print("Interrupted") # any different error except RuntimeError as e: print(e) finally: if player is not None: # stop capturing player.stop() if use_popup: cv2.destroyAllWindows() # Run Live Object Detection run_object_detection(source=0, flip=True, use_popup=False) # Run Object Detection on a Video File video_file = "../201-vision-monodepth/data/Coco Walking in Berkeley.mp4" run_object_detection(source=video_file, flip=False, use_popup=False)
#python #openvino #openvino-notebooks #live-inference #ct-scan #deeplearning #accelerated-inference
210-ct-scan-live-inference: Live Inference and Benchmark CT-scan Data with OpenVINO# Imports import os import sys import zipfile from pathlib import Path import numpy as np from monai.transforms import LoadImage from openvino.inference_engine import IECore sys.path.append("../utils") from models.custom_segmentation import SegmentationModel from notebook_utils import benchmark_model, download_file, show_live_inference # Settings # The directory that contains the IR model (xml and bin) files MODEL_PATH = "pretrained_model/quantized_unet_kits19.xml" # Uncomment the next line to use the FP16 model instead of the quantized model # MODEL_PATH = "pretrained_model/unet_kits19.xml" # Benchmark Model Performance ie = IECore() # By default, benchmark on MULTI:CPU,GPU if a GPU is available, otherwise on CPU. device = "MULTI:CPU,GPU" if "GPU" in ie.available_devices else "CPU" # Uncomment one of the options below to benchmark on other devices # device = "GPU" # device = "CPU" # device = "AUTO" # Benchmark model benchmark_model(model_path=MODEL_PATH, device=device, seconds=15) # Download and Prepare Data # Directory that contains the CT scan data. This directory should contain subdirectories # case_00XXX where XXX is between 000 and 299 BASEDIR = Path("kits19_frames_1") # The CT scan case number. For example: 16 for data from the case_00016 directory # Currently only 117 is supported CASE = 117 case_path = BASEDIR / f"case_{CASE:05d}" if not case_path.exists(): filename = download_file( f"https://storage.openvinotoolkit.org/data/test_data/openvino_notebooks/kits19/case_{CASE:05d}.zip" ) with zipfile.ZipFile(filename, "r") as zip_ref: zip_ref.extractall(path=BASEDIR) os.remove(filename) # remove zipfile print(f"Downloaded and extracted data for case_{CASE:05d}") else: print(f"Data for case_{CASE:05d} exists") # Load model ie = IECore() segmentation_model = SegmentationModel( ie=ie, model_path=Path(MODEL_PATH), sigmoid=True, rotate_and_flip=True ) image_paths = sorted(case_path.glob("imaging_frames/*jpg")) print(f"{case_path.name}, {len(image_paths)} images") # Show Live Inference # Possible options for device include "CPU", "GPU", "AUTO", "MULTI" device = "MULTI:CPU,GPU" if "GPU" in ie.available_devices else "CPU" reader = LoadImage(image_only=True, dtype=np.uint8) show_live_inference( ie=ie, image_paths=image_paths, model=segmentation_model, device=device, reader=reader )
#colab #deeplearning #gan #mnist
Build a Generative Adversarial Network (GAN) - Deep Learning with PyTorch# Build a Generative Adversarial Network (GAN) - Deep Learning with PyTorch import torch import numpy as np import matplotlib.pyplot as plt ## Configurations device = 'cuda' # image = image.to(device) batch_size = 128 # trainloader, training loop noise_dim = 64 # generator model # optimizer parameters lr = 0.0002 beta_1 = 0.5 beta_2 = 0.99 # training variables epochs = 50 ## Load MNIST dataset Loading the dataset from torch library from torchvision import datasets, transforms as T train_augs = T.Compose([ T.RandomRotation((-20, +20)), T.ToTensor() ]) # image format -> (height, width, channel) # tensor format of the image -> (channel, height, width) trainset = datasets.MNIST('MNIST/', download = True, train=True, transform = train_augs) trainset image, label = trainset[50] plt.imshow(image.squeeze(), cmap='gray') ## Load dataset into batches from torch.utils.data import DataLoader from torchvision.utils import make_grid trainloader = DataLoader(trainset, batch_size=batch_size, shuffle=True) len(trainloader) # one batch size -> 60000/128 ### Python iter() The Python iter() function returns an iterator for the given object. The iter() function creates an object which can be iterated one element at a time. These objects are useful when coupled with loops like for loop, while loop. The syntax of the iter() function is: iter(object, sentinel) dataiter = iter(trainloader) images, _ = dataiter.next() print(images.shape) ### Function to plot some images from a batch def show_tensor_images(tensor_img, num_images=16, nrow=4, size=(1,28,28)): unflat_img = tensor_img.detach().cpu() img_grid = make_grid(unflat_img[:num_images], nrow=nrow) plt.imshow(img_grid.permute(1,2,0).squeeze()) plt.show() show_tensor_images(images, num_images=32, nrow=8) # if we don't pass parameters, run with default values ## Create Discriminator Network from torch import nn from torchsummary import summary from torch.nn.modules.activation import LeakyReLU from torch.nn.modules.batchnorm import BatchNorm2d def get_discriminator_block(in_channels, out_channels, kernel_size, stride): return nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size, stride), nn.BatchNorm2d(out_channels), nn.LeakyReLU(0.2) ) We're not using a sigmoid layer, because we'll use a binarycrossentropy with logic loss which takes raw outputs class Discriminator(nn.Module): # inheriting from nn.Module class def __init__(self): # call super() in inheritance to access the parent class. # if not call super(), it will overide the __init__() by child class super(Discriminator, self).__init__() self.block_1 = get_discriminator_block(1,16,(3,3),2) self.block_2 = get_discriminator_block(16,32,(5,5),2) self.block_3 = get_discriminator_block(32,64,(5,5),2) self.flatten = nn.Flatten() self.linear = nn.Linear(in_features=64, out_features=1) def forward(self, images): x1 = self.block_1(images) x2 = self.block_2(x1) x3 = self.block_3(x2) x4 = self.flatten(x3) x5 = self.linear(x4) return x5 D = Discriminator() D.to(device) summary(D, input_size=(1,28,28)) ## Create Generator Network def get_generator_block(in_channels, out_channels, kernel_size, stride, final_block=False): if final_block == True: return nn.Sequential( nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride), nn.Tanh() ) return nn.Sequential( nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride), nn.BatchNorm2d(out_channels), nn.ReLU() ) class Generator(nn.Module): def __init__(self, noise_dim): super(Generator, self).__init__() self.noise_dim = noise_dim self.block_1 = get_generator_block(noise_dim, 256, (3,3), 2) self.block_2 = get_generator_block(256, 128, (4,4), 1) self.block_3 = get_generator_block(128, 64, (3,3), 2) self.block_4 = get_generator_block(64, 1, (4,4), 2, final_block=True) def forward(self, random_noise_vector): x = random_noise_vector.view(-1, self.noise_dim, 1, 1) x1 = self.block_1(x) x2 = self.block_2(x1) x3 = self.block_3(x2) x4 = self.block_4(x3) return x4 G = Generator(noise_dim) G.to(device) summary(G, input_size=(1, noise_dim)) ### Replace random initialized weights to normal weights for the robust training def weights_init(m): if isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d): nn.init.normal_(m.weight, 0.0, 0.02) if isinstance(m, nn.BatchNorm2d): nn.init.normal_(m.weight, 0.0, 0.02) nn.init.constant_(m.bias, 0) D = D.apply(weights_init) G = G.apply(weights_init) ## Create Loss function and Optimizer def real_loss(discriminator_prediction): criterion = nn.BCEWithLogitsLoss() ground_truth = torch.ones_like(discriminator_prediction) loss = criterion(discriminator_prediction, ground_truth) return loss def fake_loss(discriminator_prediction): criterion = nn.BCEWithLogitsLoss() ground_truth = torch.zeros_like(discriminator_prediction) loss = criterion(discriminator_prediction, ground_truth) return loss D_opt = torch.optim.Adam(D.parameters(), lr=lr, betas=(beta_1, beta_2)) G_opt = torch.optim.Adam(G.parameters(), lr=lr, betas=(beta_1, beta_2)) ## Training Loop from tqdm import tqdm for i in range(epochs): total_d_loss = 0.0 total_g_loss = 0.0 for real_image, _ in tqdm(trainloader): real_image = real_image.to(device) noise = torch.randn(batch_size, noise_dim, device=device) # find loss and update weights for Discriminator D_opt.zero_grad() fake_image = G(noise) D_pred = D(fake_image) D_fake_loss = fake_loss(D_pred) D_pred = D(real_image) D_real_loss = real_loss(D_pred) D_loss = (D_fake_loss + D_real_loss) / 2 total_d_loss += D_loss.item() D_loss.backward() D_opt.step() # find loss and update weights for Generator G_opt.zero_grad() noise = torch.randn(batch_size, noise_dim, device=device) fake_image = G(noise) D_pred = D(fake_image) G_loss = real_loss(D_pred) total_g_loss += G_loss.item() G_loss.backward() G_opt.step() avg_d_loss = total_d_loss / len(trainloader) avg_g_loss = total_g_loss / len(trainloader) print(f'Epoch: {i+1} | D_loss: {avg_d_loss} | G_loss: {avg_g_loss}') show_tensor_images(fake_image)
#colab #deeplearning #machinglearning #imports #libraries
Deep learning essential libraries - importsimport transformers from transformers import BertModel, BertTokenizer import torch import copy import pandas as pd import numpy as np import seaborn as sns from pylab import rcParams import matplotlib.pyplot as plt from matplotlib import rc from tqdm import tqdm from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report from collections import defaultdict from textwrap import wrap from torch import nn, optim from torch.utils import data %matplotlib inline %config InlineBackend.figure_format='retina' sns.set(style='whitegrid', palette='muted', font_scale=1.2) HAPPY_COLORS_PALETTE = ["#01BEFE", "#FFDD00", "#FF7D00", "#FF006D", "#ADFF02", "#8F00FF"] sns.set_palette(sns.color_palette(HAPPY_COLORS_PALETTE)) rcParams['figure.figsize'] = 6, 4 RANDOM_SEED = 42 np.random.seed(RANDOM_SEED) torch.manual_seed(RANDOM_SEED)
Sat Jun 18 2022 21:07:22 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/204-named-entity-recognition/204-named-entity-recognition.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #nlp #entity-recognition #bertSat Jun 18 2022 21:03:36 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/301-tensorflow-training-openvino/301-tensorflow-training-openvino.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #optimization #tensorflowSat Jun 18 2022 20:58:59 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/301-tensorflow-training-openvino/301-tensorflow-training-openvino-pot.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #optimization #tensorflowSat Jun 18 2022 20:53:15 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/302-pytorch-quantization-aware-training/302-pytorch-quantization-aware-training.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #quantization #nncf #optimization #pytorchSat Jun 18 2022 20:47:05 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/305-tensorflow-quantization-aware-training/305-tensorflow-quantization-aware-training.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #tensorflow #quantization #nncf #optimizationSat Jun 18 2022 20:42:14 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/405-paddle-ocr-webcam/405-paddle-ocr-webcam.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #ocr #paddle-paddle #paddle-ocr #nlpFri Jun 17 2022 09:51:37 GMT+0000 (Coordinated Universal Time)
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #object-detection #onnx #onnx-runtime #openvino-onnx-runtime #openvino-execution-provider-for-onnx #tiny-yolov4Fri Jun 17 2022 09:49:43 GMT+0000 (Coordinated Universal Time) https://github.com/microsoft/onnxruntime-inference-examples/blob/main/python/OpenVINO_EP/tiny_yolo_v2_object_detection/tiny_yolov2_obj_detection_sample.py
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference #object-detection #onnx #onnx-runtime #openvino-onnx-runtime #yolov2 #openvino-execution-provider-for-onnxFri Jun 17 2022 05:10:39 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/209-handwritten-ocr/209-handwritten-ocr.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #ocr #chinese #japanese #handwrittenFri Jun 17 2022 05:06:53 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/208-optical-character-recognition/208-optical-character-recognition.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #ocrFri Jun 17 2022 05:03:05 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/213-question-answering/213-question-answering.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp #question-answering #bertFri Jun 17 2022 04:58:24 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/211-speech-to-text/211-speech-to-text.ipynb
#python #openvino #openvino-notebooks #deeplearning #accelerated-inference ##nlp ##speechtotextFri Jun 17 2022 04:49:49 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/403-action-recognition-webcam/403-action-recognition-webcam.ipynb
#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #action-recognitionFri Jun 17 2022 04:28:34 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb
#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #object-detection #pose-estimationThu Jun 16 2022 14:49:51 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/401-object-detection-webcam/401-object-detection.ipynb
#python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #object-detectionThu Jun 16 2022 14:44:32 GMT+0000 (Coordinated Universal Time) https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/210-ct-scan-live-inference/210-ct-scan-live-inference.ipynb
#python #openvino #openvino-notebooks #live-inference #ct-scan #deeplearning #accelerated-inferenceTue Apr 26 2022 02:12:16 GMT+0000 (Coordinated Universal Time) https://www.coursera.org/learn/deep-learning-with-pytorch-generative-adversarial-network/home/welcome
#colab #deeplearning #gan #mnistMon Apr 25 2022 07:52:04 GMT+0000 (Coordinated Universal Time)
#colab #deeplearning #machinglearning #imports #libraries