402-pose-estimation-webcam: Live Human Pose Estimation with OpenVINO

PHOTO EMBED

Fri Jun 17 2022 04:28:34 GMT+0000 (UTC)

Saved by @OpenVINOtoolkit #python #openvino #openvino-notebooks #live-inference #deeplearning #accelerated-inference #object-detection #pose-estimation

# Imports
import collections
import os
import sys
import time

import cv2
import numpy as np
from IPython import display
from numpy.lib.stride_tricks import as_strided
from openvino.runtime import Core

from decoder import OpenPoseDecoder

sys.path.append("../utils")
import notebook_utils as utils

# Download the model
# directory where model will be downloaded
base_model_dir = "model"

# model name as named in Open Model Zoo
model_name = "human-pose-estimation-0001"
# selected precision (FP32, FP16, FP16-INT8)
precision = "FP16-INT8"

model_path = f"model/intel/{model_name}/{precision}/{model_name}.xml"
model_weights_path = f"model/intel/{model_name}/{precision}/{model_name}.bin"

if not os.path.exists(model_path):
    download_command = f"omz_downloader " \
                       f"--name {model_name} " \
                       f"--precision {precision} " \
                       f"--output_dir {base_model_dir}"
    ! $download_command

# Load the model
# initialize inference engine
ie_core = Core()
# read the network and corresponding weights from file
model = ie_core.read_model(model=model_path, weights=model_weights_path)
# load the model on the CPU (you can use GPU or MYRIAD as well)
compiled_model = ie_core.compile_model(model=model, device_name="CPU")

# get input and output names of nodes
input_layer = compiled_model.input(0)
output_layers = list(compiled_model.outputs)

# get input size
height, width = list(input_layer.shape)[2:]

# Processing OpenPoseDecoder
decoder = OpenPoseDecoder()

# Process Results
# 2d pooling in numpy (from: htt11ps://stackoverflow.com/a/54966908/1624463)
def pool2d(A, kernel_size, stride, padding, pool_mode="max"):
    """
    2D Pooling

    Parameters:
        A: input 2D array
        kernel_size: int, the size of the window
        stride: int, the stride of the window
        padding: int, implicit zero paddings on both sides of the input
        pool_mode: string, 'max' or 'avg'
    """
    # Padding
    A = np.pad(A, padding, mode="constant")

    # Window view of A
    output_shape = (
        (A.shape[0] - kernel_size) // stride + 1,
        (A.shape[1] - kernel_size) // stride + 1,
    )
    kernel_size = (kernel_size, kernel_size)
    A_w = as_strided(
        A,
        shape=output_shape + kernel_size,
        strides=(stride * A.strides[0], stride * A.strides[1]) + A.strides
    )
    A_w = A_w.reshape(-1, *kernel_size)

    # Return the result of pooling
    if pool_mode == "max":
        return A_w.max(axis=(1, 2)).reshape(output_shape)
    elif pool_mode == "avg":
        return A_w.mean(axis=(1, 2)).reshape(output_shape)


# non maximum suppression
def heatmap_nms(heatmaps, pooled_heatmaps):
    return heatmaps * (heatmaps == pooled_heatmaps)


# get poses from results
def process_results(img, pafs, heatmaps):
    # this processing comes from
    # https://github.com/openvinotoolkit/open_model_zoo/blob/master/demos/common/python/models/open_pose.py
    pooled_heatmaps = np.array(
        [[pool2d(h, kernel_size=3, stride=1, padding=1, pool_mode="max") for h in heatmaps[0]]]
    )
    nms_heatmaps = heatmap_nms(heatmaps, pooled_heatmaps)

    # decode poses
    poses, scores = decoder(heatmaps, nms_heatmaps, pafs)
    output_shape = list(compiled_model.output(index=0).partial_shape)
    output_scale = img.shape[1] / output_shape[3].get_length(), img.shape[0] / output_shape[2].get_length()
    # multiply coordinates by scaling factor
    poses[:, :, :2] *= output_scale
    return poses, scores

# Draw Pose Overlays
colors = ((255, 0, 0), (255, 0, 255), (170, 0, 255), (255, 0, 85), (255, 0, 170), (85, 255, 0),
          (255, 170, 0), (0, 255, 0), (255, 255, 0), (0, 255, 85), (170, 255, 0), (0, 85, 255),
          (0, 255, 170), (0, 0, 255), (0, 255, 255), (85, 0, 255), (0, 170, 255))

default_skeleton = ((15, 13), (13, 11), (16, 14), (14, 12), (11, 12), (5, 11), (6, 12), (5, 6), (5, 7),
                    (6, 8), (7, 9), (8, 10), (1, 2), (0, 1), (0, 2), (1, 3), (2, 4), (3, 5), (4, 6))


def draw_poses(img, poses, point_score_threshold, skeleton=default_skeleton):
    if poses.size == 0:
        return img

    img_limbs = np.copy(img)
    for pose in poses:
        points = pose[:, :2].astype(np.int32)
        points_scores = pose[:, 2]
        # Draw joints.
        for i, (p, v) in enumerate(zip(points, points_scores)):
            if v > point_score_threshold:
                cv2.circle(img, tuple(p), 1, colors[i], 2)
        # Draw limbs.
        for i, j in skeleton:
            if points_scores[i] > point_score_threshold and points_scores[j] > point_score_threshold:
                cv2.line(img_limbs, tuple(points[i]), tuple(points[j]), color=colors[j], thickness=4)
    cv2.addWeighted(img, 0.4, img_limbs, 0.6, 0, dst=img)
    return img

# Main Processing Function
# main processing function to run pose estimation
def run_pose_estimation(source=0, flip=False, use_popup=False, skip_first_frames=0):
    pafs_output_key = compiled_model.output("Mconv7_stage2_L1")
    heatmaps_output_key = compiled_model.output("Mconv7_stage2_L2")
    player = None
    try:
        # create video player to play with target fps
        player = utils.VideoPlayer(source, flip=flip, fps=30, skip_first_frames=skip_first_frames)
        # start capturing
        player.start()
        if use_popup:
            title = "Press ESC to Exit"
            cv2.namedWindow(title, cv2.WINDOW_GUI_NORMAL | cv2.WINDOW_AUTOSIZE)

        processing_times = collections.deque()

        while True:
            # grab the frame
            frame = player.next()
            if frame is None:
                print("Source ended")
                break
            # if frame larger than full HD, reduce size to improve the performance
            scale = 1280 / max(frame.shape)
            if scale < 1:
                frame = cv2.resize(frame, None, fx=scale, fy=scale, interpolation=cv2.INTER_AREA)

            # resize image and change dims to fit neural network input
            # (see https://github.com/openvinotoolkit/open_model_zoo/tree/master/models/intel/human-pose-estimation-0001)
            input_img = cv2.resize(frame, (width, height), interpolation=cv2.INTER_AREA)
            # create batch of images (size = 1)
            input_img = input_img.transpose((2,0,1))[np.newaxis, ...]

            # measure processing time
            start_time = time.time()
            # get results
            results = compiled_model([input_img])
            stop_time = time.time()

            pafs = results[pafs_output_key]
            heatmaps = results[heatmaps_output_key]
            # get poses from network results
            poses, scores = process_results(frame, pafs, heatmaps)

            # draw poses on a frame
            frame = draw_poses(frame, poses, 0.1)

            processing_times.append(stop_time - start_time)
            # use processing times from last 200 frames
            if len(processing_times) > 200:
                processing_times.popleft()

            _, f_width = frame.shape[:2]
            # mean processing time [ms]
            processing_time = np.mean(processing_times) * 1000
            fps = 1000 / processing_time
            cv2.putText(frame, f"Inference time: {processing_time:.1f}ms ({fps:.1f} FPS)", (20, 40),
                        cv2.FONT_HERSHEY_COMPLEX, f_width / 1000, (0, 0, 255), 1, cv2.LINE_AA)

            # use this workaround if there is flickering
            if use_popup:
                cv2.imshow(title, frame)
                key = cv2.waitKey(1)
                # escape = 27
                if key == 27:
                    break
            else:
                # encode numpy array to jpg
                _, encoded_img = cv2.imencode(".jpg", frame, params=[cv2.IMWRITE_JPEG_QUALITY, 90])
                # create IPython image
                i = display.Image(data=encoded_img)
                # display the image in this notebook
                display.clear_output(wait=True)
                display.display(i)
    # ctrl-c
    except KeyboardInterrupt:
        print("Interrupted")
    # any different error
    except RuntimeError as e:
        print(e)
    finally:
        if player is not None:
            # stop capturing
            player.stop()
        if use_popup:
            cv2.destroyAllWindows()

# Run Live Pose Estimation
run_pose_estimation(source=0, flip=True, use_popup=False)

# Run Pose Estimation on a Video File
video_file = "https://github.com/intel-iot-devkit/sample-videos/blob/master/store-aisle-detection.mp4?raw=true"

run_pose_estimation(video_file, flip=False, use_popup=False, skip_first_frames=500)
content_copyCOPY

This notebook demonstrates live pose estimation with OpenVINO. We use the OpenPose model human-pose-estimation-0001 from Open Model Zoo. At the bottom of this notebook, you will see live inference results from your webcam. You can also upload a video file. NOTE: To use the webcam, you must run this Jupyter notebook on a computer with a webcam. If you run on a server, the webcam will not work. However, you can still do inference on a video in the final step. If you have not yet installed OpenVINO™, please follow the Installation Guide to install all required dependencies. https://github.com/openvinotoolkit/openvino_notebooks/blob/main/README.md#-installation-guide Link to .bin and .xml files: https://github.com/openvinotoolkit/open_model_zoo/blob/master/models/intel/human-pose-estimation-0001/model.yml

https://github.com/openvinotoolkit/openvino_notebooks/blob/main/notebooks/402-pose-estimation-webcam/402-pose-estimation.ipynb