302-pytorch-quantization-aware-training: Optimizing PyTorch models with Neural Network Compression Framework of OpenVINO by 8-bit quantization


Sat Jun 18 2022 20:53:15 GMT+0000 (UTC)

Saved by @OpenVINOtoolkit #python #openvino #openvino-notebooks #deeplearning #accelerated-inference #quantization #nncf #optimization #pytorch

# Imports and Settings
# On Windows, add the directory that contains cl.exe to the PATH to enable PyTorch to find the
# required C++ tools. This code assumes that Visual Studio 2019 is installed in the default
# directory. If you have a different C++ compiler, please add the correct path to os.environ["PATH"]
# directly. Note that the C++ Redistributable is not enough to run this notebook.

# Adding the path to os.environ["LIB"] is not always required - it depends on the system's configuration

import sys

if sys.platform == "win32":
    import distutils.command.build_ext
    import os
    from pathlib import Path

    VS_INSTALL_DIR = r"C:/Program Files (x86)/Microsoft Visual Studio"
    cl_paths = sorted(list(Path(VS_INSTALL_DIR).glob("**/Hostx86/x64/cl.exe")))
    if len(cl_paths) == 0:
        raise ValueError(
            "Cannot find Visual Studio. This notebook requires a C++ compiler. If you installed "
            "a C++ compiler, please add the directory that contains cl.exe to `os.environ['PATH']`."
        # If multiple versions of MSVC are installed, get the most recent version
        cl_path = cl_paths[-1]
        vs_dir = str(cl_path.parent)
        os.environ["PATH"] += f"{os.pathsep}{vs_dir}"
        # Code for finding the library dirs from
        # https://stackoverflow.com/questions/47423246/get-pythons-lib-path
        d = distutils.core.Distribution()
        b = distutils.command.build_ext.build_ext(d)
        os.environ["LIB"] = os.pathsep.join(b.library_dirs)
        print(f"Added {vs_dir} to PATH")

import sys
import time
import warnings  # to disable warnings on export to ONNX
import zipfile
from pathlib import Path
import logging

import torch
import nncf  # Important - should be imported directly after torch

import torch.nn as nn
import torch.nn.parallel
import torch.optim
import torch.utils.data
import torch.utils.data.distributed
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms

from nncf.common.utils.logger import set_log_level
set_log_level(logging.ERROR)  # Disables all NNCF info and warning messages
from nncf import NNCFConfig
from nncf.torch import create_compressed_model, register_default_init_args
from openvino.runtime import Core
from torch.jit import TracerWarning

from notebook_utils import download_file

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"Using {device} device")

MODEL_DIR = Path("model")
OUTPUT_DIR = Path("output")
DATA_DIR = Path("data")
BASE_MODEL_NAME = "resnet18"
image_size = 64


# Paths where PyTorch, ONNX and OpenVINO IR models will be stored
fp32_pth_path = Path(MODEL_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".pth")
fp32_onnx_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_fp32")).with_suffix(".onnx")
fp32_ir_path = fp32_onnx_path.with_suffix(".xml")
int8_onnx_path = Path(OUTPUT_DIR / (BASE_MODEL_NAME + "_int8")).with_suffix(".onnx")
int8_ir_path = int8_onnx_path.with_suffix(".xml")

# It's possible to train FP32 model from scratch, but it might be slow. So the pre-trained weights are downloaded by default.
pretrained_on_tiny_imagenet = True
fp32_pth_url = "https://storage.openvinotoolkit.org/repositories/nncf/openvino_notebook_ckpts/302_resnet18_fp32_v1.pth"
download_file(fp32_pth_url, directory=MODEL_DIR, filename=fp32_pth_path.name)

# Download Tiny ImageNet dataset
def download_tiny_imagenet_200(
    data_dir: Path,
    archive_path = data_dir / tarname
    download_file(url, directory=data_dir, filename=tarname)
    zip_ref = zipfile.ZipFile(archive_path, "r")

def prepare_tiny_imagenet_200(dataset_dir: Path):
    # format validation set the same way as train set is formatted
    val_data_dir = dataset_dir / 'val'
    val_annotations_file = val_data_dir / 'val_annotations.txt'
    with open(val_annotations_file, 'r') as f:
        val_annotation_data = map(lambda line: line.split('\t')[:2], f.readlines())
    val_images_dir = val_data_dir / 'images'
    for image_filename, image_label in val_annotation_data:
        from_image_filepath = val_images_dir / image_filename
        to_image_dir = val_data_dir / image_label
        if not to_image_dir.exists():
        to_image_filepath = to_image_dir / image_filename

DATASET_DIR = DATA_DIR / "tiny-imagenet-200"
if not DATASET_DIR.exists():
    print(f"Successfully downloaded and prepared dataset at: {DATASET_DIR}")

# Pre-train Floating-Point Model
# Train Function
def train(train_loader, model, criterion, optimizer, epoch):
    batch_time = AverageMeter("Time", ":3.3f")
    losses = AverageMeter("Loss", ":2.3f")
    top1 = AverageMeter("Acc@1", ":2.2f")
    top5 = AverageMeter("Acc@5", ":2.2f")
    progress = ProgressMeter(
        len(train_loader), [batch_time, losses, top1, top5], prefix="Epoch:[{}]".format(epoch)

    # switch to train mode

    end = time.time()
    for i, (images, target) in enumerate(train_loader):
        images = images.to(device)
        target = target.to(device)

        # compute output
        output = model(images)
        loss = criterion(output, target)

        # measure accuracy and record loss
        acc1, acc5 = accuracy(output, target, topk=(1, 5))
        losses.update(loss.item(), images.size(0))
        top1.update(acc1[0], images.size(0))
        top5.update(acc5[0], images.size(0))

        # compute gradient and do opt step

        # measure elapsed time
        batch_time.update(time.time() - end)
        end = time.time()

        print_frequency = 50
        if i % print_frequency == 0:

# Validate Function
def validate(val_loader, model, criterion):
    batch_time = AverageMeter("Time", ":3.3f")
    losses = AverageMeter("Loss", ":2.3f")
    top1 = AverageMeter("Acc@1", ":2.2f")
    top5 = AverageMeter("Acc@5", ":2.2f")
    progress = ProgressMeter(len(val_loader), [batch_time, losses, top1, top5], prefix="Test: ")

    # switch to evaluate mode

    with torch.no_grad():
        end = time.time()
        for i, (images, target) in enumerate(val_loader):
            images = images.to(device)
            target = target.to(device)

            # compute output
            output = model(images)
            loss = criterion(output, target)

            # measure accuracy and record loss
            acc1, acc5 = accuracy(output, target, topk=(1, 5))
            losses.update(loss.item(), images.size(0))
            top1.update(acc1[0], images.size(0))
            top5.update(acc5[0], images.size(0))

            # measure elapsed time
            batch_time.update(time.time() - end)
            end = time.time()

            print_frequency = 10
            if i % print_frequency == 0:

        print(" * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}".format(top1=top1, top5=top5))
    return top1.avg

# Helpers
class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self, name, fmt=":f"):
        self.name = name
        self.fmt = fmt

    def reset(self):
        self.val = 0
        self.avg = 0
        self.sum = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum += val * n
        self.count += n
        self.avg = self.sum / self.count

    def __str__(self):
        fmtstr = "{name} {val" + self.fmt + "} ({avg" + self.fmt + "})"
        return fmtstr.format(**self.__dict__)

class ProgressMeter(object):
    def __init__(self, num_batches, meters, prefix=""):
        self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
        self.meters = meters
        self.prefix = prefix

    def display(self, batch):
        entries = [self.prefix + self.batch_fmtstr.format(batch)]
        entries += [str(meter) for meter in self.meters]

    def _get_batch_fmtstr(self, num_batches):
        num_digits = len(str(num_batches // 1))
        fmt = "{:" + str(num_digits) + "d}"
        return "[" + fmt + "/" + fmt.format(num_batches) + "]"

def accuracy(output, target, topk=(1,)):
    """Computes the accuracy over the k top predictions for the specified values of k"""
    with torch.no_grad():
        maxk = max(topk)
        batch_size = target.size(0)

        _, pred = output.topk(maxk, 1, True, True)
        pred = pred.t()
        correct = pred.eq(target.view(1, -1).expand_as(pred))

        res = []
        for k in topk:
            correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
            res.append(correct_k.mul_(100.0 / batch_size))
        return res

# Get a Pre-trained FP32 Model
num_classes = 200  # 200 is for Tiny ImageNet, default is 1000 for ImageNet
init_lr = 1e-4
batch_size = 128
epochs = 4

model = models.resnet18(pretrained=not pretrained_on_tiny_imagenet)
# update the last FC layer for Tiny ImageNet number of classes
model.fc = nn.Linear(in_features=512, out_features=num_classes, bias=True)

# Data loading code
train_dir = DATASET_DIR / "train"
val_dir = DATASET_DIR / "val"
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])

train_dataset = datasets.ImageFolder(
val_dataset = datasets.ImageFolder(

train_loader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True, num_workers=4, pin_memory=True, sampler=None

val_loader = torch.utils.data.DataLoader(
    val_dataset, batch_size=batch_size, shuffle=False, num_workers=4, pin_memory=True

# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=init_lr)

if pretrained_on_tiny_imagenet:
    # ** WARNING: torch.load functionality uses Python's pickling module that
    # may be used to perform arbitrary code execution during unpickling. Only load data that you
    # trust.
    checkpoint = torch.load(str(fp32_pth_path), map_location="cpu")
    model.load_state_dict(checkpoint["state_dict"], strict=True)
    acc1_fp32 = checkpoint["acc1"]
    best_acc1 = 0
    # Training loop
    for epoch in range(0, epochs):
        # run a single training epoch
        train(train_loader, model, criterion, optimizer, epoch)

        # evaluate on validation set
        acc1 = validate(val_loader, model, criterion)

        is_best = acc1 > best_acc1
        best_acc1 = max(acc1, best_acc1)

        if is_best:
            checkpoint = {"state_dict": model.state_dict(), "acc1": acc1}
            torch.save(checkpoint, fp32_pth_path)
    acc1_fp32 = best_acc1
print(f"Accuracy of FP32 model: {acc1_fp32:.3f}")

dummy_input = torch.randn(1, 3, image_size, image_size).to(device)

torch.onnx.export(model, dummy_input, fp32_onnx_path)
print(f"FP32 ONNX model was exported to {fp32_onnx_path}.")

# Create and Initialize Quantization
nncf_config_dict = {
    "input_info": {"sample_size": [1, 3, image_size, image_size]},
    "log_dir": str(OUTPUT_DIR),  # log directory for NNCF-specific logging outputs
    "compression": {
        "algorithm": "quantization",  # specify the algorithm here
nncf_config = NNCFConfig.from_dict(nncf_config_dict)

nncf_config = register_default_init_args(nncf_config, train_loader)
compression_ctrl, model = create_compressed_model(model, nncf_config)
acc1 = validate(val_loader, model, criterion)
print(f"Accuracy of initialized INT8 model: {acc1:.3f}")

# Fine-tune the Compressed Model
compression_lr = init_lr / 10
optimizer = torch.optim.Adam(model.parameters(), lr=compression_lr)

# train for one epoch with NNCF
train(train_loader, model, criterion, optimizer, epoch=0)

# evaluate on validation set after Quantization-Aware Training (QAT case)
acc1_int8 = validate(val_loader, model, criterion)

print(f"Accuracy of tuned INT8 model: {acc1_int8:.3f}")
print(f"Accuracy drop of tuned INT8 model over pre-trained FP32 model: {acc1_fp32 - acc1_int8:.3f}")

# Export INT8 Model to ONNX
if not int8_onnx_path.exists():
    warnings.filterwarnings("ignore", category=TracerWarning)
    warnings.filterwarnings("ignore", category=UserWarning)
    # Export INT8 model to ONNX that is supported by the OpenVINO™ toolkit
    print(f"INT8 ONNX model exported to {int8_onnx_path}.")

# Convert ONNX models to OpenVINO Intermediate Representation (IR)
if not fp32_ir_path.exists():
    !mo --input_model $fp32_onnx_path --input_shape "[1,3, $image_size, $image_size]" --mean_values "[123.675, 116.28 , 103.53]" --scale_values "[58.395, 57.12 , 57.375]" --data_type FP16 --output_dir $OUTPUT_DIR

if not int8_ir_path.exists():
    !mo --input_model $int8_onnx_path --input_shape "[1,3, $image_size, $image_size]" --mean_values "[123.675, 116.28 , 103.53]" --scale_values "[58.395, 57.12 , 57.375]" --data_type FP16 --output_dir $OUTPUT_DIR

# Benchmark Model Performance by Computing Inference Time
def parse_benchmark_output(benchmark_output):
    parsed_output = [line for line in benchmark_output if not (line.startswith(r"[") or line.startswith("  ") or line == "")]
    print(*parsed_output, sep='\n')

print('Benchmark FP32 model (IR)')
benchmark_output = ! benchmark_app -m $fp32_ir_path -d CPU -api async -t 15

print('Benchmark INT8 model (IR)')
benchmark_output = ! benchmark_app -m $int8_ir_path -d CPU -api async -t 15

# Show CPU Information for reference
ie = Core()
ie.get_property(device_name="CPU", name="FULL_DEVICE_NAME")

his tutorial demonstrates how to use NNCF 8-bit quantization to optimize the PyTorch model for inference with OpenVINO Toolkit. For more advanced usage refer to these examples. This notebook is based on 'ImageNet training in PyTorch' example. To make downloading and training fast, we use a ResNet-18 model with the Tiny ImageNet dataset. It consists of the following steps: - Transform the original FP32 model to INT8 - Use fine-tuning to restore the accuracy - Export optimized and original models to ONNX and then to OpenVINO - Measure and compare the performance of the models If you have not yet installed OpenVINO™, please follow the Installation Guide to install all required dependencies. https://github.com/openvinotoolkit/openvino_notebooks/blob/main/README.md#-installation-guide