Snippets Collections
# numpy and matplotlib imported, seed set

# Simulate random walk 500 times
all_walks = []
for i in range(500) :
    random_walk = [0]
    for x in range(100) :
        step = random_walk[-1]
        dice = np.random.randint(1,7)
        if dice <= 2:
            step = max(0, step - 1)
        elif dice <= 5:
            step = step + 1
        else:
            step = step + np.random.randint(1,7)
        if np.random.rand() <= 0.001 :
            step = 0
        random_walk.append(step)
    all_walks.append(random_walk)

# Create and plot np_aw_t
np_aw_t = np.transpose(np.array(all_walks))

# Select last row from np_aw_t: ends
ends = np_aw_t[-1, :]

# Plot histogram of ends, display plot
plt.hist(ends)
plt.show()
# Numpy is imported; seed is set

# Initialize all_walks (don't change this line)
all_walks = []

# Simulate random walk 10 times
for i in range(10):

    # Code from before
    random_walk = [0]
    for x in range(100) :
        step = random_walk[-1]
        dice = np.random.randint(1,7)

        if dice <= 2:
            step = max(0, step - 1)
        elif dice <= 5:
            step = step + 1
        else:
            step = step + np.random.randint(1,7)
        random_walk.append(step)

    # Append random_walk to all_walks
    all_walks.append(random_walk)

# Print all_walks
print(all_walks)


#####################################################################
# numpy and matplotlib imported, seed set

# Simulate random walk 250 times
all_walks = []
for i in range(250) :
    random_walk = [0]
    for x in range(100) :
        step = random_walk[-1]
        dice = np.random.randint(1,7)
        if dice <= 2:
            step = max(0, step - 1)
        elif dice <= 5:
            step = step + 1
        else:
            step = step + np.random.randint(1,7)

        # Implement clumsiness
        if np.random.rand() <= 0.001 :
            step = 0

        random_walk.append(step)
    all_walks.append(random_walk)

# Create and plot np_aw_t
np_aw_t = np.transpose(np.array(all_walks))
plt.plot(np_aw_t)
plt.show()


# Numpy is imported, seed is set

# Initialization
random_walk = [0]

for x in range(100) :
    step = random_walk[-1]
    dice = np.random.randint(1,7)

    if dice <= 2:
        step = max(0, step - 1)
    elif dice <= 5:
        step = step + 1
    else:
        step = step + np.random.randint(1,7)

    random_walk.append(step)

# Import matplotlib.pyplot as plt
import matplotlib.pyplot as plt

# Plot random_walk
plt.plot(random_walk)

# Show the plot
plt.show()
# Numpy is imported, seed is set

# Initialize random_walk
random_walk = [0]

# Complete the ___
for x in range(100) :
    # Set step: last element in random_walk
   
    step = random_walk[-1]

    # Roll the dice
    dice = np.random.randint(1,7)

    # Determine next step
    if dice <= 2:
        step = step - 1
    elif dice <= 5:
        step = step + 1
    else:
        step = step + np.random.randint(1,7)

    # append next_step to random_walk
    random_walk.append(step)

# Print random_walk
print(random_walk)

#Not Going below zero
# Numpy is imported, seed is set

# Initialize random_walk
random_walk = [0]

for x in range(100) :
    step = random_walk[-1]
    dice = np.random.randint(1,7)

    if dice <= 2:
        # Replace below: use max to make sure step can't go below 0
        step = max(0, step - 1)
    elif dice <= 5:
        step = step + 1
    else:
        step = step + np.random.randint(1,7)

    random_walk.append(step)

print(random_walk)

Save snippets that work with our extensions

Available in the Chrome Web Store Get Firefox Add-on Get VS Code extension