```# numpy and matplotlib imported, seed set

# Simulate random walk 500 times
all_walks = []
for i in range(500) :
random_walk = 
for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)
if dice <= 2:
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)
if np.random.rand() <= 0.001 :
step = 0
random_walk.append(step)
all_walks.append(random_walk)

# Create and plot np_aw_t
np_aw_t = np.transpose(np.array(all_walks))

# Select last row from np_aw_t: ends
ends = np_aw_t[-1, :]

# Plot histogram of ends, display plot
plt.hist(ends)
plt.show()
```
```# Numpy is imported; seed is set

# Initialize all_walks (don't change this line)
all_walks = []

# Simulate random walk 10 times
for i in range(10):

# Code from before
random_walk = 
for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)

if dice <= 2:
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)
random_walk.append(step)

# Append random_walk to all_walks
all_walks.append(random_walk)

# Print all_walks
print(all_walks)

#####################################################################
# numpy and matplotlib imported, seed set

# Simulate random walk 250 times
all_walks = []
for i in range(250) :
random_walk = 
for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)
if dice <= 2:
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)

# Implement clumsiness
if np.random.rand() <= 0.001 :
step = 0

random_walk.append(step)
all_walks.append(random_walk)

# Create and plot np_aw_t
np_aw_t = np.transpose(np.array(all_walks))
plt.plot(np_aw_t)
plt.show()

```
```# Numpy is imported, seed is set

# Initialization
random_walk = 

for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)

if dice <= 2:
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)

random_walk.append(step)

# Import matplotlib.pyplot as plt
import matplotlib.pyplot as plt

# Plot random_walk
plt.plot(random_walk)

# Show the plot
plt.show()```
```# Numpy is imported, seed is set

# Initialize random_walk
random_walk = 

# Complete the ___
for x in range(100) :
# Set step: last element in random_walk

step = random_walk[-1]

# Roll the dice
dice = np.random.randint(1,7)

# Determine next step
if dice <= 2:
step = step - 1
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)

# append next_step to random_walk
random_walk.append(step)

# Print random_walk
print(random_walk)

#Not Going below zero
# Numpy is imported, seed is set

# Initialize random_walk
random_walk = 

for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)

if dice <= 2:
# Replace below: use max to make sure step can't go below 0
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)

random_walk.append(step)

print(random_walk)
```
```# Numpy is imported, seed is set

# Starting step
step = 50
# Roll the dice
dice = np.random.randint(1,7)
# Finish the control construct
if dice <= 2 :
step = step - 1
elif dice <= 5 :
step = step + 1
else:
step = step + np.random.randint(1,7)

# Print out dice and step
print(dice)
print(step)```
```# Import numpy as np
import numpy as np

# Set the seed
np.random.seed(123)

# Generate and print random float
print(np.random.rand())

#Roll The Dice
# Import numpy and set seed
import numpy as np
np.random.seed(123)

# Use randint() to simulate a dice
print(np.random.randint(1,7))
# Use randint() again
print(np.random.randint(1,7))

```
```# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Use .apply(str.upper)

cars['COUNTRY'] = cars['country'].apply(str.upper)
print(cars)```
```# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Adapt for loop
for lab, row in cars.iterrows() :
print(lab + ": " + str(row['cars_per_cap']))

#Something new

# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Code for loop that adds COUNTRY column
for lab, row in cars.iterrows():
cars.loc[lab,'COUNTRY'] = row['country'].upper()

# Print cars
print(cars)```
```#Iterating over a Pandas DataFrame is typically done with the iterrows()
# Import cars data
import pandas as pd
cars = pd.read_csv('cars.csv', index_col = 0)

# Iterate over rows of cars
for lab,row in cars.iterrows():
print(lab)
print(row)```
```# Import numpy as np

import numpy as np
#for x in my_array : #in 1D Numpy array
#for x in np.nditer(my_array) : #for 2D Numpy array

# For loop over np_height

for x in np_height:
print(str(x) + " inches")

# For loop over np_baseball
for x in (np.nditer(np_baseball)):
print(x)```
```# Definition of dictionary
europe = {'spain':'madrid', 'france':'paris', 'germany':'berlin',
'norway':'oslo', 'italy':'rome', 'poland':'warsaw', 'austria':'vienna' }

# Iterate over europe
for key, value in europe.items() :
print('the capital of ' + str(key) + ' is ' + str(value))
```
```# house list of lists
house = [["hallway", 11.25],
["kitchen", 18.0],
["living room", 20.0],
["bedroom", 10.75],
["bathroom", 9.50]]

# Build a for loop from scratch
for x in house :
#x to access name of room
#x to access area in sqm
print('the ' + x + " is " + str(x) + " sqm")```
`df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]`
```/*
The tax rate is often a function of the income or in other words individuals at different income levels will pay different taxes.

Also, in some countries like the UK, individuals get to keep a certain amount of their income
that's not taxed while the remainder is taxed at the applicable rate. So for example, let's say a person makes 100K and their tax rate is 10% or 0.1 but they are allowed to keep 30K. They will end up paying 7000 or 7K in taxes because:
100K - 30K = 70K. // they keep 30K and have 70K left.
10% of 70K = 7K. // they will pay 10% tax on what's left.

Your challenge is to complete the code below to return the function that will correctly calculate taxes for a person based on the rules below.

Amount                            Tax Rate
--------------------------------------------
<= 100,000                        10% or 0.1
> 100,000 to 500,000 (inclusive)  20% or 0.2
> 500,000                         35% or 0.3
*/

// Should return a function that accepts a number that's the amount to be taxed
// and returns the tax amount after factoring in the income not taxed and the
// applicable tax rate.
function getTaxCalculator(incomeNotTaxed) {
// your code here (approximately 10 lines)
function calculateTax(amount){
let taxAmount = amount - incomeNotTaxed;
if (amount <= 100000){
taxAmount * 0.1
}else if((amount>100000) && (amount<= 500000)){
taxAmount * 0.2
}else{
taxAmount * 0.3
}
}
return calculateTax
}

// THIS IS FOR YOUR TESTING ONLY.
const calculateTax = getTaxCalculator(30000)
console.log(calculateTax(100000)) // should print 70000
console.log(calculateTax(350000)) // should print 64000
console.log(calculateTax(600000)) // should print 171000```
```// This array (characters) has a length of 4 i.e characters.length is 4
// characters will return ["a", "b", "c"]
// characters will return "b"
// and so on.
const characters = [
["a", "b", "c"],
["d", "e", "f"],
["g", "h", " i"],
["x", "y", "z"],
];

function characterExist(letter) {
// we initialize exists to false because we intend to set it to true only if /// we find the letter in the colors array
let exist = false;

// TODO(1): Write code to loop through the characters array, and set exist to
// true if the value in the variable letter is found in the array.
for(i=0; i<=characters.length; i++){
for(j=0; j<=characters[i].length; j++){
if(characters[i][j] === letter){
exist = true;
return true
}
}
}
return exist;
}

// THIS IS FOR TESTING ONLY
console.log("a exists = " +  characterExist("a")); // prints true
console.log("p exists = " +  characterExist("p")); // prints false```
``` #declare two set the range
1.i = 1
2.j = 5
#use while loop for i
3.while i < 4:
#use while loop for j
4.while j < 8:
5.print(i, ",", j)
6.j = j + 1
7.i = i + 1
Output:
1 , 5
2 , 6
3 , 7
```
star

Fri Nov 26 2021 10:42:38 GMT+0000 (UTC)

#list #forloop #for #loop #dicegame
star

Fri Nov 26 2021 10:06:16 GMT+0000 (UTC)

#list #forloop #for #loop ##dictionary
star

Fri Nov 26 2021 09:45:49 GMT+0000 (UTC)

#list #forloop #for #loop ##dictionary
star

Thu Nov 25 2021 17:01:18 GMT+0000 (UTC)

#list #forloop #for #loop ##dictionary
star

Thu Nov 25 2021 16:48:58 GMT+0000 (UTC)

#list #forloop #for #loop ##dictionary
star

Thu Nov 25 2021 16:42:08 GMT+0000 (UTC)

#list #forloop #for #loop ##dictionary
star

Thu Nov 25 2021 16:28:23 GMT+0000 (UTC)

#list #forloop #for #loop ##dictionary
star

Thu Nov 25 2021 16:16:28 GMT+0000 (UTC)

#list #forloop #for #loop ##dictionary
star

Wed Jun 30 2021 07:05:52 GMT+0000 (UTC)

#python #comprehension #loop
star

Fri Jun 25 2021 15:12:00 GMT+0000 (UTC) edconnect.com

#loop
star

Wed Jun 23 2021 13:58:24 GMT+0000 (UTC) edconnect.com

#2-darrays #loop
star

Tue Apr 21 2020 06:12:11 GMT+0000 (UTC) https://beginnersbook.com/2018/01/python-while-loop/

#python #python #loop #whileloop #nestedwhile loop

#### Save snippets that work with our extensions   