```class Solution {
public:
vis[node]=1;
bool ans=true;
if(vis[i])
return false;
}
vis[node]=0;
return ans;
}

vector<int> eventualSafeNodes(int V, vector<int> adj[]) {
// code here
vector<int> vis(V,0),ans;
for(int i=0;i<V;i++){
ans.push_back(i);
}
return ans;
}
};```
```# numpy and matplotlib imported, seed set

# Simulate random walk 500 times
all_walks = []
for i in range(500) :
random_walk = [0]
for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)
if dice <= 2:
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)
if np.random.rand() <= 0.001 :
step = 0
random_walk.append(step)
all_walks.append(random_walk)

# Create and plot np_aw_t
np_aw_t = np.transpose(np.array(all_walks))

# Select last row from np_aw_t: ends
ends = np_aw_t[-1, :]

# Plot histogram of ends, display plot
plt.hist(ends)
plt.show()
```
```# Numpy is imported; seed is set

# Initialize all_walks (don't change this line)
all_walks = []

# Simulate random walk 10 times
for i in range(10):

# Code from before
random_walk = [0]
for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)

if dice <= 2:
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)
random_walk.append(step)

# Append random_walk to all_walks
all_walks.append(random_walk)

# Print all_walks
print(all_walks)

#####################################################################
# numpy and matplotlib imported, seed set

# Simulate random walk 250 times
all_walks = []
for i in range(250) :
random_walk = [0]
for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)
if dice <= 2:
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)

# Implement clumsiness
if np.random.rand() <= 0.001 :
step = 0

random_walk.append(step)
all_walks.append(random_walk)

# Create and plot np_aw_t
np_aw_t = np.transpose(np.array(all_walks))
plt.plot(np_aw_t)
plt.show()

```
```# Numpy is imported, seed is set

# Initialization
random_walk = [0]

for x in range(100) :
step = random_walk[-1]
dice = np.random.randint(1,7)

if dice <= 2:
step = max(0, step - 1)
elif dice <= 5:
step = step + 1
else:
step = step + np.random.randint(1,7)

random_walk.append(step)

# Import matplotlib.pyplot as plt
import matplotlib.pyplot as plt

# Plot random_walk
plt.plot(random_walk)

# Show the plot
plt.show()```
star

Wed Oct 18 2023 17:40:55 GMT+0000 (Coordinated Universal Time) https://practice.geeksforgeeks.org/problems/eventual-safe-states/1

#graph #dfs #eventualsafestates
star

Fri Nov 26 2021 12:06:21 GMT+0000 (Coordinated Universal Time)

#list #forloop #for #loop #dicegame #matplotlib #[plot #graph
star

Fri Nov 26 2021 11:07:35 GMT+0000 (Coordinated Universal Time)

#list #forloop #for #loop #dicegame #matplotlib #[plot #graph
star

Fri Nov 26 2021 10:49:17 GMT+0000 (Coordinated Universal Time)

#list #forloop #for #loop #dicegame #matplotlib #[plot #graph